scholarly journals The Strain Sensitivity of Coal Reinforced Smart Concrete by Piezoresistive Effect

Author(s):  
Özkan KOLATAR ◽  
Egemen TEOMETE ◽  
Serap KAHRAMAN
Author(s):  
Andrea Meoni ◽  
Antonella D'Alessandro ◽  
Austin Downey ◽  
Enrique García-Macías ◽  
Marco Rallini ◽  
...  

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNTs content. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both static and dynamically varying compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.


2019 ◽  
Vol 224 ◽  
pp. 420-427 ◽  
Author(s):  
Erman Demircilioğlu ◽  
Egemen Teomete ◽  
Erik Schlangen ◽  
F. Javier Baeza

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2258
Author(s):  
Shiuh-Chuan Her ◽  
Wei-Chun Hsu

Buckypaper consisting of a carbon nanotube (CNT) sheet has a great potential for sensing and structural applications due to the exceptional piezoresistive and mechanical properties of CNTs. In this work, buckypaper was impregnated with the epoxy resin to improve the fragility and handling capability. The mechanical properties of the buckypaper/epoxy composite were determined by the tensile and nanoindentation tests. A thermogravimetric analyzer (TGA) was used to evaluate the thermal stability. Strain and temperature sensing performances of the buckypaper/epoxy composite based on the piezoresistive effect were investigated using a meter source. Experimental results indicated that the elastic modulus and ultimate strength of the buckypaper/epoxy composite were increased by 82% and 194%, respectively, in comparison with the pristine buckypaper, while the strain and temperature sensitivities were decreased by 33% and 0.2%, respectively. A significant increase of the tensile strength accompanied with a moderate decrease of the strain sensitivity demonstrates that the overall performance of buckypaper/epoxy composite is better than that of pristine buckypaper.


Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 831 ◽  
Author(s):  
Andrea Meoni ◽  
Antonella D’Alessandro ◽  
Austin Downey ◽  
Enrique García-Macías ◽  
Marco Rallini ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1106
Author(s):  
Alejandro Cortés ◽  
Xoan F. Sánchez-Romate ◽  
Alberto Jiménez-Suárez ◽  
Mónica Campo ◽  
Ali Esmaeili ◽  
...  

Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific sensors manufactured by DLP 3D printing technology with complex geometries: a spring, a three-column device and a footstep-sensing platform based on the three-column device. All of them show a great sensitivity of the measured electrical resistance to the applied load and high cyclic reproducibility, demonstrating their versatility and applicability to be implemented in numerous items in our daily lives or in industrial devices. Different types of carbon nanotubes—single-walled, double-walled and multi-walled CNTs (SWCNTs, DWCNTs, MWCNTs)—were used to evaluate the effect of their morphology on electrical and electromechanical performance. SWCNT- and DWCNT-doped nanocomposites presented a higher Tg compared with MWCNT-doped nanocomposites due to a lower UV light shielding effect. This phenomenon also justifies the decrease of nanocomposite Tg with the increase of CNT content in every case. The electromechanical analysis reveals that SWCNT- and DWCNT-doped nanocomposites show a higher electromechanical performance than nanocomposites doped with MWCNTs, with a slight increment of strain sensitivity in tensile conditions, but also a significant strain sensitivity gain at bending conditions.


2021 ◽  
Vol 9 (6) ◽  
pp. 1880-1887
Author(s):  
Xia Sun ◽  
Shaoshuai He ◽  
Mengmeng Yao ◽  
Xiaojun Wu ◽  
Haitao Zhang ◽  
...  

Fully-physically crosslinked hydrogels with strain sensitivity and anti-freezing properties for wireless sensing and low temperature sensing were prepared.


1973 ◽  
Vol 61 (1) ◽  
pp. 129-130 ◽  
Author(s):  
F.C. Luo ◽  
M. Epstein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document