scholarly journals Mounting and support for pseudo biaxial Scheimpflug focusing for unity-magnification, high-speed particle velocimetry

Author(s):  
Simon Lautrup Ribergård ◽  
Peder Jørgensgaard Olesen ◽  
Niels Steenfeldt Jensen ◽  
Jakob Skov Nielsen ◽  
Clara Marika Velte

A camera mount that can support both heavy cameras and heavy optics allowing a total of seven degrees of freedom shared between them has been designed. This allows for Scheimpflug focusing along one or two axes. A paper proposing a solution to two- axes Scheimpflug focusing has been examined and a new nomer is proposed for two-axes Scheimpflug focusing. The newly designed mounts allow for a broader range of solutions for combinations of positioning and alignment than traditional Scheimpflug mounts.

2021 ◽  
Vol 62 (9) ◽  
Author(s):  
Patrick M. Seltner ◽  
Sebastian Willems ◽  
Ali Gülhan ◽  
Eric C. Stern ◽  
Joseph M. Brock ◽  
...  

Abstract The influence of the flight attitude on aerodynamic coefficients and static stability of cylindrical bodies in hypersonic flows is of interest in understanding the re/entry of space debris, meteoroid fragments, launch-vehicle stages and other rotating objects. Experiments were therefore carried out in the hypersonic wind tunnel H2K at the German Aerospace Center (DLR) in Cologne. A free-flight technique was employed in H2K, which enables a continuous rotation of the cylinder without any sting interferences in a broad angular range from 0$$^{\circ }$$ ∘ to 90$$^{\circ }$$ ∘ . A high-speed stereo-tracking technique measured the model motion during free-flight and high-speed schlieren provided documentation of the flow topology. Aerodynamic coefficients were determined in careful post-processing, based on the measured 6-degrees-of-freedom (6DoF) motion data. Numerical simulations by NASA’s flow solvers Cart3D and US3D were performed for comparison purposes. As a result, the experimental and numerical data show a good agreement. The inclination of the cylinder strongly effects both the flowfield and aerodynamic loads. Experiments and simulations with concave cylinders showed marked difference in aerodynamic behavior due to the presence of a shock–shock interaction (SSI) near the middle of the model. Graphic abstract


2012 ◽  
Vol 591-593 ◽  
pp. 303-306
Author(s):  
Xiao You Zhang ◽  
Akio Kifuji ◽  
Dong Jue He

Electrical discharge machining has the capability of machining all conductive materials regardless of hardness, and has the ability to deal with complex shapes. However, the speed and accuracy of conventional EDM are limited by probability and efficiency of the electrical discharges. This paper describes a three degrees of freedom (3-DOF) controlled, wide-bandwidth, high-precision, long-stroke magnetic drive actuator. The actuator can be attached to conventional electrical discharge machines to realize a high-speed and high-accuracy EDM. The actuator primarily consists of thrust and radial magnetic bearings, thrust and radial air bearings and a magnetic coupling mechanism. By using the thrust and radial magnetic bearings, the translational motions of the spindle can be controlled. The magnetic drive actuator possesses a positioning resolution of the order of micrometer, a bandwidth greater than 100Hz and a positioning stroke of 2mm.


Author(s):  
Alireza Marzbanrad ◽  
Jalil Sharafi ◽  
Mohammad Eghtesad ◽  
Reza Kamali

This is report of design, construction and control of “Ariana-I”, an Underwater Remotely Operated Vehicle (ROV), built in Shiraz University Robotic Lab. This ROV is equipped with roll, pitch, heading, and depth sensors which provide sufficient feedback signals to give the system six degrees-of-freedom actuation. Although its center of gravity and center of buoyancy are positioned in such a way that Ariana-I ROV is self-stabilized, but the combinations of sensors and speed controlled drivers provide more stability of the system without the operator involvement. Video vision is provided for the system with Ethernet link to the operation unit. Control commands and sensor feedbacks are transferred on RS485 bus; video signal, water leakage alarm, and battery charging wires are provided on the same multi-core cable. While simple PI controllers would improve the pitch and roll stability of the system, various control schemes can be applied for heading to track different paths. The net weight of ROV out of water is about 130kg with frame dimensions of 130×100×65cm. Ariana-I ROV is designed such that it is possible to be equipped with different tools such as mechanical arms, thanks to microprocessor based control system provided with two directional high speed communication cables for on line vision and operation unit.


Author(s):  
Lianzheng Cui ◽  
Zuogang Chen ◽  
Yukun Feng

The drag reduction effect of interceptors on planning boats has been widely proven, but the mechanism of the effect has been rarely studied in terms of drag components, especially for spray resistance. The resistance was caused by the high gauge pressure under the boats transformed from the dynamic pressure, and it is the largest drag component in the high-speed planning mode. In this study, numerical simulations of viscous flow fields around a planning boat with and without interceptors were conducted. A two degrees of freedom motion model was employed to simulate the trim and sinkage. The numerical results were validated against the experimental data. The flow details with and without the interceptor were visualized and compared to reveal the underlying physics. A thinner and longer waterline could be achieved by the interceptor, which made the boat push the water away more gradually, and hence, the wave-making resistance could be decreased. The improved waterline also reduced the component of the freestream normal to the hull surface and led to the less transformed dynamic pressure, resulting in the lowAer spray resistance. Furthermore, the suppression of the flow separation could also be benefited from the interceptor; the viscous pressure resistance was therefore decreased.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840079
Author(s):  
Wensheng Huang ◽  
Hongli Xu

The application of machine vision to industrial robots is a hot topic in robot research nowadays. A welding robot with machine vision had been developed, which is convenient and flexible to reach the welding point with six degrees-of-freedom (DOF) manipulator, while the singularity of its movement trail is prevented, and the stability of the mechanism had been fully guaranteed. As the precise industry camera can capture the optical feature of the workpiece to reflect in the camera’s CCD lens, the workpiece is identified and located through a visual pattern recognition algorithm based on gray scale processing, on the gradient direction of edge pixel or on geometric element so that high-speed visual acquisition, image preprocessing, feature extraction and recognition, target location are integrated and hardware processing power is improved. Another task is to plan control strategy of control system, and the upper computer software is programmed in order that multi-axis motion trajectory is optimized and servo control is accomplished. Finally, prototype was developed and validation experiments show that the welding robot has high stability, high efficiency, high precision, even if welding joints are random and workpiece contour is irregular.


2021 ◽  
Author(s):  
Yu SUN ◽  
Jinsong Zhou ◽  
Dao Gong ◽  
Yuanjin Ji

Abstract To absorb the vibration of the carbody of the high-speed train in multiple degrees of freedom, a multi-degree of freedom dynamic vibration absorber (MDOF DVA) is proposed. Installed under the carbody, the natural vibration frequency of the MDOF DVA from each DOF can be designed as a DVA for each single degree of freedom of the carbody. Hence, a 12-DOF model including the main vibration system and a MDOF DVA is established, and the principle of Multi-DOF dynamic vibration absorption is analyzed by combining the design method of single DVA and genetic algorithm. Based on a high-speed train dynamics model including an under-carbody MDOF DVA, the vibration control effect on each DOF of the MDOF DVA is analyzed by the virtual excitation method. Moreover, a high static and low dynamic stiffness (HSLDS) mount is proposed based on a cam–roller–spring mechanism for the installation of the MDOF DVA due to the requirement of the low vertical dynamic stiffness. From the dynamic simulation of a non-linear model in time-domain, the vibration control performance of the MDOF DVA installed with nonlinear HSLDS mount on the carbody is analyzed. The results show that the MDOF DVA can absorb the vibration of the carbody in multiple degrees of freedom effectively, and improve the running ride quality of the vehicle.


2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


Author(s):  
Vivek Kumar ◽  
Vikas Rastogi ◽  
PM Pathak

Nowadays, rail transport is a very important part of the transportation network for any countries. The demand for high operational speed makes hunting a very common instability problem in railway vehicles. Hunting leads to discomfort and causes physical damage to carriage components, such as wheels, rails, etc. The causes of instability and derailment should be identified and eliminated at the designing stage of a train to ensure its safe operation. In most of the earlier studies on hunting behaviour, a simplified model with a lower degree of freedom were considered, which resulted in incorrect results in some instances. In this study, a complete bond graph model of a railway vehicle with 31 degrees of freedom is presented to determine the response of a high-speed railway vehicle. For this purpose, two wheel–rail contacts grounded on a flange contact and Kalker’s linear creep theory are implemented. The model is simulated to observe the effects of suspension elements on the vehicle’s critical hunting velocity. It is observed that the critical hunting speed is extremely sensitive to the primary longitudinal and lateral springs. Other primary and secondary springs and dampers also affect the critical speed to some extent. However, the critical hunting velocity is insensitive to vertical suspension elements for both the primary and secondary suspensions. Also, the critical speed is found to be inversely related to the conicity of the wheel.


Author(s):  
W. Kim ◽  
J. Rastegar

Abstract Trajectory synthesis for robot manipulators with redundant kinematic degrees-of-freedom has been studied by numerous investigators. Redundant manipulators are of interest since the redundant degrees-of-freedom can be used to improve the local and global kinematic and dynamic performance of a system. As a robot manipulator is forced to track a given trajectory, the required actuating torques (forces) may excite the natural modes of vibration of the system. Noting that manipulators with revolute joints have nonlinear dynamics, high harmonic excitation torques are generally generated even though such harmonics have been eliminated from the synthesized trajectories and filtered from the drive inputs. In this paper, a redundancy resolution method is developed based on the Trajectory Pattern Method (TPM) to synthesize trajectories such that the actuating torques required to realize them do not contain higher harmonic components with significant amplitudes. With such trajectories, a robot manipulator can operate at higher speeds and achieve higher tracking accuracy with suppressed residual vibration. As an example, optimal trajectories are synthesized for point to point motions of a plane 3R manipulator.


2021 ◽  
Vol 5 (4) ◽  
pp. 130
Author(s):  
Rinku K. Mittal ◽  
Ramesh K. Singh

Catastrophic tool failure due to the low flexural stiffness of the micro-tool is a major concern for micromanufacturing industries. This issue can be addressed using high rotational speed, but the gyroscopic couple becomes prominent at high rotational speeds for micro-tools affecting the dynamic stability of the process. This study uses the multiple degrees of freedom (MDOF) model of the cutting tool to investigate the gyroscopic effect in machining. Hopf bifurcation theory is used to understand the long-term dynamic behavior of the system. A numerical scheme based on the linear multistep method is used to solve the time-periodic delay differential equations. The stability limits have been predicted as a function of the spindle speed. Higher tool deflections occur at higher spindle speeds. Stability lobe diagram shows the conservative limits at high rotational speeds for the MDOF model. The predicted stability limits show good agreement with the experimental limits, especially at high rotational speeds.


Sign in / Sign up

Export Citation Format

Share Document