scholarly journals Simultaneous two-phase flow measurements in a high-speed particle-laden under-expanded jet

Author(s):  
Miguel Xavier Diaz-Lopez ◽  
Juan Sebastian Rubio ◽  
Rui Ni

The objective of this study is to understand the dynamics of a high-speed particle-laden under-expanded jet, motivated by landings on extraterrestrial bodies. In this setup, inertial particles are entrained and accelerated by an under-expanded jet. But, due to their inertia, the particle velocity is significantly lower than that of the surrounding gas close to the nozzle, so the two phases are coupled through aerodynamic drag. Sub-micron oil droplets are dispensed upstream to serve as tracers, whose velocity is determined through a PIV system; inertial particles, after image segmenting is performed to separate them from PIV data, will be tracked over time with a PTV system. This was accomplished with a single laser pulse and the camera straddle time to produce image pairs and shorten the pulse width. The results will help to understand particle-laden flow in a new regime where the background flow is compressible and the Mach number based on the slip velocity is not negligible, which may help to pave a foundation for future studies in compressible multiphase flows.

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Yan Luo ◽  
Jianqiu Zhou ◽  
Xia Yang ◽  
Zhanxiang Jiang

This paper presents a numerical method for high-speed compressible cavitating flows. The method is derived from one-fluid formulation in a sense that the two phases are well mixed and the mixture is considered as a locally homogeneous media. Energy equation is solved to predict the temperature evolution which is then used together with pressure to update the density field. A volume of fluid (VOF) phase-fraction based interface capturing approach is used to capture the phase front between the two immiscible fluids. The derived formulations have been implemented into a pressure-based, segregated algebraic semi-implicit compressible solver in Openfoam, which can be used to solve for high-speed compressible two-phase flows involving phase changing. Numerical examples include the cavitating flows induced by an ultrasonic oscillating horn with and without a counter sample. The numerical results by the proposed method are validated against the published experimental data as well as numerical results and good agreements have been obtained. Our calculation demonstrates that the proposed numerical method is applicable to the study of high-speed two phase flows with phase transition and wave propagation, such as shock waves induced by the collapse of the cavitation bubbles.


Author(s):  
Muhammad Awais Sattar ◽  
Matheus Martinez Garcia ◽  
Luis M Portela ◽  
Laurent Babout

Electrical Resistance Tomography (ERT) has been used in the literature to monitor the gas-liquid separation. However, the image reconstruction algorithms used in the studies take a considerable amount of time to generate the tomograms, which is far above the time scales of the flow inside the inline separator and, as a consequence, the technique is not fast enough to capture all the rele-vant dynamics of the process, vital for control applications. This article proposes a new strategy based on the physics behind the measurement and simple logics to monitor the separation with a high temporal resolution by minimizing both the amount of data and the calculations required to reconstruct one frame of the flow. To demonstrate its potential, the electronics of an ERT system are used together with a high-speed camera to measure the flow inside an inline swirl separator. For the 16-electrode system used in this study, only 12 measurements are required to reconstruct the whole flow distribution with the proposed algorithm, 10x less than the minimum number of measurements of ERT (120). In terms of computational effort, the technique was shown to be 1000x faster than solving the inverse problem non-iteratively via the Gauss-Newton approach, one of the computationally cheapest techniques available. Therefore, this novel algorithm has the potential to achieve measurement speeds in the order of 104 times the ERT speed in the context of inline swirl separation, pointing to flow measurements at around 10kHz while keeping the aver-age estimation error below 6 mm in the worst case scenario.


Author(s):  
R. E. M. Morales ◽  
M. J. da Silva ◽  
E. N. Santos ◽  
L. Dorini ◽  
C. E. F. do Amaral ◽  
...  

Multi-phase flow measurements are very common in industrial applications especially of the oil and gas industry. In order to study such pattern one can apply many different techniques such as capacitive probes, X-ray and gamma ray tomography, ultrasound transducers, wire-mesh sensors and high speed videometry. This article describes experimental study of water-air slug in horizontal pipes through non-intrusive image analysis technique. A flow test section comprising of a pipe of 26 mm internal diameter and 9 m long was employed to generate slug flows under controlled conditions. The behavior of the flow was studied using gas and liquid velocities between 0.3 m/s and 2 m/s with 6000 images (500×232 pixels) for each case. The algorithm comprises the automatic analysis of a sequence of frames in MatLab to measure flow characteristics such as Taylor bubble velocity and frequency applying morphological treatment. Finally, the parameters measured through the high speed videometry were compared with theoretical predictions showing that such method can be used to validate other types of sensors in experimental conditions.


Author(s):  
Ines Benito ◽  
Njuki W. Mureithi

Two-phase flows are preponderant in industrial components. The present work deals with external two-phase flows across tube banks commonly found in heat exchangers, boilers and steam generators. The flows are generally highly complex and remain theoretically intractable in most cases. The two-phase flow patterns provide a convenient albeit qualitative means for describing and classifying two phase flows. The flow patterns are also closely correlated to fluid-structure interaction dynamics and thus provide a practically useful basis for the study of two-phase flow-induced vibrations. For internal two-phase flows, maps by Taitel et al. (1980) and others have led to detailed and well defined maps. For transverse flows in tube bundles, there is significantly less agreement on the flow patterns and governing parameters. The complexity of flow in tube arrays is an obvious challenge. A second difficulty is the definition of distinct flow patterns and the identification of parameters uniquely identifying the flow patterns. The present work addresses the problem of two-phase flow pattern identification in tube arrays. Flow measurements using optical as well as flow visualization via high-speed videos and photography have been conducted. To identify the flow patterns, an artificial intelligence machine learning approach was taken. Pattern classification was achieved by designing a support vector machine (SVM) classifier. The SVM achieves quantitative and non-subjective classification by mapping the flow patterns in a high dimensional mathematical space in which the different flow patterns have unique characteristics. Details of the flow measurement, parameter definition and SVM design are presented in the paper. Flow patterns identified using the SVM are presented and compared with previously identified flow patterns.


2012 ◽  
Vol 522 ◽  
pp. 436-440
Author(s):  
Li Chao Ren ◽  
Mutellip Ahmat ◽  
Qiang Gao ◽  
Jing Luo

This research based on the vapor-liquid two-phases flow theory and methods, by using the CFD mix-multiphase flow model, the seal cavity vapor-liquid two-phases flow field for the bellows cartridge mechanical seal under such the high-temperature, high-pressure, high-speed as complex working conditions was numerically simulated and analyzed, then the characteristics of the complex three-dimensional flow field of seal cavity caused by the rotation of the sealing ring were obtained by the different position of the injected coolant, and the different cooling effects were contrasted, then the best cooling position were found by analysis. The researching results provide a theoretical basis for the structural optimization design of the high parameters bellows cartridge mechanical seal devices.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1187-1199
Author(s):  
Qaed M. Ali ◽  
Mohammed M. Ezzalden

BLDC motors are characterized by electronic commutation, which is performed by using an electric three-phase inverter. The direct control system of the BLDC motor consists of double loops; including the inner-loop for current regulating and outer-loop for speed control. The operation of the current controller requires feedback of motor currents; the conventional current controller uses two current sensors on the ac side of the inverter to measure the currents of two phases, while the third current would be accordingly calculated. These two sensors should have the same characteristics, to achieve balanced current measurements. It should be noted that the sensitivity of these sensors changes with time. In the case of one sensor fails, both of them must be replaced. To overcome this problem, it is preferable to use one sensor instead of two. The proposed control system is based on a deadbeat predictive controller, which is used to regulate the DC current of the BLDC motor. Such a controller can be considered as digital controller mode, which has fast response, high precision and can be easily implemented with microprocessor. The proposed control system has been simulated using Matlab software, and the system is tested at a different operating condition such as low speed and high speed.


Author(s):  
Aleksandr S. Serebryakov ◽  
Vladimir L. Osokin ◽  
Sergey A. Kapustkin

The article describes main provisions and relations for calculating short-circuit currents and phase currents in a three-phase traction transformer with a star-triangle-11 connection of windings, which feeds two single-phase loads in AC traction networks with a nominal voltage of 25 kilovolts. These transformers provide power to the enterprises of the agro-industrial complex located along the railway line. (Research purpose) The research purpose is in substantiating theoretical equations for digital intelligent relay protection in two-phase short circuits. (Materials and methods) It was found that since the sum of instantaneous currents in each phase is zero, each phase of the transformer works independently. We found that this significantly simplifies the task of analyzing processes with a two-phase short circuit. In this case, the problem of calculating short-circuit currents in the traction network can be simplified by reducing it to the calculation of an ordinary electric circuit with three unknown currents. (Results and discussion) The article describes equations for calculating short-circuit resistances for one phase of the transformer when connecting the secondary winding as a star or a triangle. The currents in the phases of the transformer winding at short circuit for the star-triangle-11 and star-star-with-ground schemes are compared. It was found that when calculating short-circuit currents, there is no need to convert the secondary winding of the traction transformer from a triangle to a star. (Conclusions) It was found that the results of the research can be used in the transition of relay protection systems from electromagnetic relays to modern high-speed digital devices, which will increase the operational reliability of power supply systems for traction and non-traction power consumers.


2021 ◽  
Vol 11 (9) ◽  
pp. 3934
Author(s):  
Federico Lluesma-Rodríguez ◽  
Temoatzin González ◽  
Sergio Hoyas

One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-73
Author(s):  
David J. Pearce

Rust is a relatively new programming language that has gained significant traction since its v1.0 release in 2015. Rust aims to be a systems language that competes with C/C++. A claimed advantage of Rust is a strong focus on memory safety without garbage collection. This is primarily achieved through two concepts, namely, reference lifetimes and borrowing . Both of these are well-known ideas stemming from the literature on region-based memory management and linearity / uniqueness . Rust brings both of these ideas together to form a coherent programming model. Furthermore, Rust has a strong focus on stack-allocated data and, like C/C++ but unlike Java, permits references to local variables. Type checking in Rust can be viewed as a two-phase process: First, a traditional type checker operates in a flow-insensitive fashion; second, a borrow checker enforces an ownership invariant using a flow-sensitive analysis. In this article, we present a lightweight formalism that captures these two phases using a flow-sensitive type system that enforces “ type and borrow safety .” In particular, programs that are type and borrow safe will not attempt to dereference dangling pointers. Our calculus core captures many aspects of Rust, including copy- and move-semantics, mutable borrowing, reborrowing, partial moves, and lifetimes. In particular, it remains sufficiently lightweight to be easily digested and understood and, we argue, still captures the salient aspects of reference lifetimes and borrowing. Furthermore, extensions to the core can easily add more complex features (e.g., control-flow, tuples, method invocation). We provide a soundness proof to verify our key claims of the calculus. We also provide a reference implementation in Java with which we have model checked our calculus using over 500B input programs. We have also fuzz tested the Rust compiler using our calculus against 2B programs and, to date, found one confirmed compiler bug and several other possible issues.


Sign in / Sign up

Export Citation Format

Share Document