scholarly journals Prediction of Hepatic Clearance of Stereoselective Metabolism of Carvedilol in Liver Microsomes and Hepatocytes of Sprague-Dawley and Cytochrome P450 2D-Deficient Dark Agouti Rats

2019 ◽  
Vol 22 ◽  
pp. 72-84
Author(s):  
Masahiro Iwaki ◽  
Toshiro Niwa ◽  
Hiroyuki Tanaka ◽  
Atsushi Kawase ◽  
Hiroshi Komura

Hepatic clearance (CLh) of carvedilol (CAR), which is eliminated via stereoselective metabolism by the CYP2D subfamily of cytochromes P450 (CYPs), was predicted using liver microsomes and hepatocytes from Sprague-Dawley (SD) rats and CYP2D-deficient Dark Agouti (DA) rats to determine the usefulness of prediction method. Plasma concentrations of CAR following intravenous injection to DA rats were higher than those in SD rats. The volume of distribution at steady state and total clearance (CLtot) of S-CAR were approximately two times greater than those of R-CAR in both strains. CLh predicted from in vitro studies using DA rat liver microsomes was different from that obtained from in vivo studies. In contrast, in vitro CLh prediction using DA rat hepatocytes was nearly identical to the CLh observed in DA rats in vivo, and was lower than that in SD rats. The predicted CLh in vitro using hepatocytes correlated well with the observed CLtot in vivo, which is expected to be nearly the same as CLh. These results suggest that in vitro metabolic studies using hepatocytes are more relevant with regard to stereoselectively predicting CLh of CAR than those using liver microsomes.

Author(s):  
Peng Wang ◽  
Xiao-Xia Hu ◽  
Ying-hui Li ◽  
Nan-Yong Gao ◽  
Guo-quan Chen ◽  
...  

This study was to evaluate the effect of resveratrol on the pharmacokinetics of ticagrelor in rats and the metabolism of ticagrelor in human CYP3A4 and liver microsomes. Eighteen Sprague-Dawley rats were randomly divided into three groups: group A (control group), group B (50mg/kg resveratrol), and group C (150mg/kg resveratrol ). After 30 minutes administration of resveratrol, a single dose of ticagrelor (18mg/kg) was administered orally. The vitro experiment was performed to examine the influence of resveratrol on ticagrelor metabolism in CYP3A4*1, human, and rat liver microsomes. Serial biological samples were assayed by validated UHPLC-MS/MS methods. In vivo study, the AUC and Cmax of ticagrelor in group B and C appeared to be significantly higher than the control group, while Vz/F and CLz/F of ticagrelor in group B and C were significantly decreased. In vitro study, resveratrol exhibited an inhibitory effect on CYP3A4*1, human and rat liver microsomes. The IC50 values of resveratrol were 56.75μM,69.07μM and 14.22μM, respectively. Our results indicated that resveratrol had a inhibitory effect on the metabolism of ticagrelor in vitro and vivo. It should be paid more attention to the clinical combination of resveratrol with ticagrelor and ticagrelor plasma concentration should be monitored to avoid the occurrence of adverse reaction.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 258 ◽  
Author(s):  
Wei Feng ◽  
Ling-Yu Zhou ◽  
Rui-Feng Mu ◽  
Le Gao ◽  
Bing-Yuan Xu ◽  
...  

Schisantherin A is an active ingredient originating from Schisandra chinensis (Turcz.) which has hepatoprotective and anti-oxidation activities. In this study, in vitro metabolisms investigated on rat liver microsomes (RLMs) and in vivo metabolisms explored on male Sprague Dawley rats of Schisantherin A were tested, respectively. The metabolites of Schisantherin A were identified using ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Based on the method, 60 metabolites were successfully identified and structurally characterized including 48 phase-I and 12 phase-II metabolites. Among the metabolites, 45 metabolites were reported for the first time. Moreover, 56 and eight metabolites were detected in urine and bile and 19 metabolites were identified in rats’ plasma. It demonstrated that hepatic and extra-hepatic metabolic pathways were both involved in Schisantherin A biotransformation in rats. Five in vitro metabolites were structurally characterized for the first time. The results indicated that the metabolic pathways mainly include oxidation, reduction, methylation, and conjugation with glucuronide, taurine, glucose, and glutathione groups. This study provides a practical strategy for rapidly screening and identifying metabolites, and the results provide basic data for future pharmacological and toxicology studies of Schisantherin A and other lignin ingredients.


Fitoterapia ◽  
2011 ◽  
Vol 82 (8) ◽  
pp. 1222-1230 ◽  
Author(s):  
Wei Zhou ◽  
Liu-qing Di ◽  
Jin-jun Shan ◽  
Xiao-lin Bi ◽  
Le-tian Chen ◽  
...  

Author(s):  
Xiangli Zhang ◽  
Qin Shen ◽  
Yi Wang ◽  
Leilei Zhou ◽  
Qi Weng ◽  
...  

Background: E2 (Camptothecin - 20 (S) - O- glycine - deoxycholic acid), and G2 (Camptothecin - 20 (S) - O - acetate - deoxycholic acid) are two novel bile acid-derived camptothecin analogues by introducing deoxycholic acid in 20-position of CPT(camptothecin) with greater anticancer activity and lower systematic toxicity in vivo. Objective: We aimed to investigate the metabolism of E2 and G2 by Rat Liver Microsomes (RLM). Methods: Phase Ⅰ and Phase Ⅱ metabolism of E2 and G2 in rat liver microsomes were performed respectively, and the mixed incubation of phase I and phase Ⅱ metabolism of E2 and G2 was also processed. Metabolites were identified by liquid chromatographic/mass spectrometry. Results: The results showed that phase I metabolism was the major biotransformation route for both E2 and G2. The isoenzyme involved in their metabolism had some difference. The intrinsic clearance of G2 was 174.7mL/min. mg protein, more than three times of that of E2 (51.3 mL/min . mg protein), indicating a greater metabolism stability of E2. 10 metabolites of E2 and 14 metabolites of G2 were detected, including phase I metabolites (mainly via hydroxylations and hydrolysis) and their further glucuronidation products. Conclusion: These findings suggested that E2 and G2 have similar biotransformation pathways except some difference in the hydrolysis ability of the ester bond and amino bond from the parent compounds, which may result in the diversity of their metabolism stability and responsible CYPs(Cytochrome P450 proteins).


2017 ◽  
Vol 46 (1) ◽  
pp. 335-347 ◽  
Author(s):  
Yu-xing Fei ◽  
Tian-hong Zhang ◽  
Jing Zhao ◽  
He Ren ◽  
Ya-nan Du ◽  
...  

Objective To investigate the effect of hypothermia on the pharmacokinetics and pharmacodynamics of nimodipine in rabbits using in vivo and in vitro methods. Methods Five healthy New Zealand rabbits received a single dose of nimodipine (0.5 mg/kg) intravenously under normothermic and hypothermic conditions. Doppler ultrasound was used to monitor cerebral blood flow, vascular resistance, and heart rate. In vitro evaluations of protein binding, hepatocyte uptake and intrinsic clearance of liver microsomes at different temperatures were also conducted. Results Plasma concentrations of nimodipine were significantly higher in hypothermia than in normothermia. Nimodipine improved cerebral blood flow under both conditions, but had a longer effective duration during the hypothermic period. Low temperature decreased the intrinsic clearance of liver microsomes, with no change in protein binding or hepatocyte uptake of nimodipine. Conclusion Nimodipine is eliminated at a slower rate during hypothermia than during normothermia, mainly due to the decreased activity of cytochrome P450 enzymes. This results in elevated system exposure with little enhancement in pharmacological effect.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Joshua A. Chu-Tan ◽  
Matt Rutar ◽  
Kartik Saxena ◽  
Yunlu Wu ◽  
Lauren Howitt ◽  
...  

Photobiomodulation at a wavelength of 670 nm has been shown to be effective in preventing photoreceptor cell death in the retina. We treated Sprague-Dawley (SD) rats with varying doses of 670 nm light (9; 18; 36; 90 J/cm2) before exposing them to different intensities of damaging white light (750; 1000; 1500 lux). 670 nm light exhibited a biphasic response in its amelioration of cell death in light-induced degenerationin vivo. Lower light damage intensities required lower doses of 670 nm light to reduce TUNEL cell death. At higher damage intensities, the highest dose of 670 nm light showed protection.In vitro, the Seahorse XFe96 Extracellular Flux Analyzer revealed that 670 nm light directly influences mitochondrial metabolism by increasing the spare respiratory capacity of mitochondria in 661 W photoreceptor-like cells in light damaged conditions. Our findings further support the use of 670 nm light as an effective treatment against retinal degeneration as well as shedding light on the mechanism of protection through the increase of the mitochondrial spare respiratory capacity.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jinhui Wang ◽  
Feifei Chen ◽  
Hui Jiang ◽  
Jia Xu ◽  
Deru Meng ◽  
...  

Poziotinib is an orally active, irreversible, pan-HER tyrosine kinase inhibitor used to treat non-small cell lung cancer, breast cancer, and gastric cancer. Poziotinib is currently under clinical investigation, and understanding its drug-drug interactions is extremely important for its future development and clinical application. The cocktail method is most suitable for evaluating the activity of cytochrome P450 enzymes (CYPs). As poziotinib is partially metabolized by CYPs, cocktail probes are used to study the interaction between drugs metabolized by each CYP subtype. Midazolam, bupropion, dextromethorphan, tolbutamide, chlorzoxazone, phenacetin, and their metabolites were used to examine the effects of poziotinib on the activity of cyp1a2, 2b1, 2d1, 2c11, 2e1, and 3a1/2, respectively. The in vitro experiment was carried out by using rat liver microsomes (RLMs), whereas the in vivo experiment involved the comparison of the pharmacokinetic parameters of the probes after co-administration with poziotinib to rats to those of control rats treated with only probes. UPLC-MS/MS was used to detect the probes and their metabolites in rat plasma and rat liver microsomes. The in vitro results revealed that the half-maximal inhibitory concentration values of bupropion and tolbutamide in RLMs were 8.79 and 20.17 μM, respectively, indicating that poziotinib showed varying degrees of inhibition toward cyp2b1 and cyp2c11. Poziotinib was a competitive inhibitor of cyp2b1 and cyp2c11, with Ki values of 16.18 and 17.66 μM, respectively. No time- or concentration-dependence of inhibition by poziotinib was observed toward cyp2b1 and cyp2c11 in RLMs. Additionally, no obvious inhibitory effects were observed on the activity of cyp1a2, cyp2d1, cyp2e1, and cyp3a1/2. In vivo analysis revealed that bupropion, tolbutamide, phenacetin, and chlorzoxazone showed significantly different pharmacokinetic parameters after administration (p < 0.05); there was no significant difference in the pharmacokinetic parameters of dextromethorphan and midazolam. These results show that poziotinib inhibited cyp2b1 and cyp2c11, but induced cyp1a2 and cyp2e1 in rats. Thus, poziotinib inhibited cyp2b1 and cyp2c11 activity in rats, suggesting the possibility of interactions between poziotinib and these CYP substrates and the need for caution when combining them in clinical settings.


2019 ◽  
Vol 20 (7) ◽  
pp. 1712 ◽  
Author(s):  
Arianna Giusti ◽  
Xuan-Bac Nguyen ◽  
Stanislav Kislyuk ◽  
Mélanie Mignot ◽  
Cecilia Ranieri ◽  
...  

Zebrafish-based platforms have recently emerged as a useful tool for toxicity testing as they combine the advantages of in vitro and in vivo methodologies. Nevertheless, the capacity to metabolically convert xenobiotics by zebrafish eleuthero embryos is supposedly low. To circumvent this concern, a comprehensive methodology was developed wherein test compounds (i.e., parathion, malathion and chloramphenicol) were first exposed in vitro to rat liver microsomes (RLM) for 1 h at 37 °C. After adding methanol, the mixture was ultrasonicated, placed for 2 h at −20 °C, centrifuged and the supernatant evaporated. The pellet was resuspended in water for the quantification of the metabolic conversion and the detection of the presence of metabolites using ultra high performance liquid chromatography-Ultraviolet-Mass (UHPLC-UV-MS). Next, three days post fertilization (dpf) zebrafish eleuthero embryos were exposed to the metabolic mix diluted in Danieau’s medium for 48 h at 28 °C, followed by a stereomicroscopic examination of the adverse effects induced, if any. The novelty of our method relies in the possibility to quantify the rate of the in vitro metabolism of the parent compound and to co-incubate three dpf larvae and the diluted metabolic mix for 48 h without inducing major toxic effects. The results for parathion show an improved predictivity of the toxic potential of the compound.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3470
Author(s):  
Yin ◽  
Ma ◽  
Liang ◽  
Wang ◽  
Sun ◽  
...  

Although farrerol, a characteristically bioactive constituent of Rhododendron dauricum L., exhibits extensive biological and pharmacological activities (e.g., anti-oxidant, anti-immunogenic, and anti-angiogenic) as well as a high drug development potential, its metabolism remains underexplored. Herein, we employed ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry coupled with multiple data post-processing techniques to rapidly identify farrerol metabolites produced in vivo (in rat blood, bile, urine and feces) and in vitro (in rat liver microsomes). As a result, 42 in vivo metabolites and 15 in vitro metabolites were detected, and farrerol shown to mainly undergo oxidation, reduction, (de)methylation, glucose conjugation, glucuronide conjugation, sulfate conjugation, N-acetylation and N-acetylcysteine conjugation. Thus, this work elaborates the metabolic pathways of farrerol and reveals the potential pharmacodynamics forms of farrerol.


Sign in / Sign up

Export Citation Format

Share Document