scholarly journals MODELING OF THE VACUUM INFUSION PROCESSES IN THE MANUFACTURING OF THE LARGE POLYMERIC COMPOSITE STRUCTURES

Author(s):  
C.P. Huang
Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 313
Author(s):  
Sergey Shevtsov ◽  
Igor Zhilyaev ◽  
Shun-Hsyung Chang ◽  
Jiing-Kae Wu ◽  
Natalia Snezhina

The increasingly widespread use of vacuum assisted technologies in the manufacture of polymer-composite structures does not always provide the required product quality and repeatability. Deterioration of quality most often appears itself in the form of incomplete filling of the preform with resin as a result of the inner and outer dry spot formation, as well as due to premature gelation of the resin and blockage of the vacuum port. As experience shows, these undesirable phenomena are significantly dependent on the location of the resin and vacuum ports. This article presents a method for making a decision on the rational design of a process layout. It is based on early forecasting of its objectives in terms of quality and reliability when simulating its finite element model, on the correlation analysis of the preliminary and final quality assessments, as well as on the study of the cross-correlation of a group of early calculated sub-criteria. The effectiveness of the proposed method is demonstrated by the example of vacuum infusion of a 3D thin-walled structure of complex geometry.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012004
Author(s):  
J-P Huang ◽  
I Zhilyaev ◽  
N Snezhina ◽  
S Shevtsov

Abstract Increasing the quality and reliable reproducibility of large-size composite structures molding using the vacuum infusion method, which is gaining popularity in various industries, is achieved in practice through numerous tests by try and errors that require significant costs and time. The purpose of these tests is to determine the layout of the ports for the resin injection and vacuum supply, as well as the temperature regime that ensures the absence of isolated non-impregnated zones, the minimum porosity and the required reinforcement volume fraction in the composite. The proposed approach removes the simplifying assumptions used in commercial software for modeling the process, which reduce the accuracy of reconstruction of its dynamics and the sensitivity to the formation of unrepairable defects such as dry spots. It involves multiphysics modeling of resin filling in a porous preform by describing the resin front dynamics by the phase field equation, pressure distribution in an unsaturated porous medium by the Richards equation, the evolution of the degree of cure by the convection / diffusion / thermokinetics equation, and thermal processes by the heat transfer equation using modified models of viscosity, the diffusion coefficient of the degree of cure, the boundary condition for the vacuum port. To reduce the finite element computation time of the investigated variants of the process, which is necessary for its computer optimization, the predictive partial sub-criteria were used, which give a reliable prediction before the beginning of the resin gel and solidification. Due to this, a gain in computation time is 30-50% with a significant prediction accuracy of quality objectives and the presence of possible defects.


Author(s):  
Ajay Kesavan ◽  
Sabu John ◽  
Henry Li ◽  
Israel Herszberg

This paper introduces the some of the experimental and analytical work behind the autonomous damage detection technique. The research study conducted here resulted in the development of a Structural Health Monitoring (SHM) system for a 2-D polymeric composite T-joint, used in maritime structures. Two methods of damage detection are discussed — A statistics-based outlier technique and one using Artificial Neural Networks (ANNs). The SHM using ANNs system was found to be capable of not only detecting the presence of multiple delaminations in a composite structure, but also capable of determining the location and extent of all the delaminations present in the T-joint structure, regardless of the load (angle and magnitude) acting on the structure. The system developed relies on the examination of the strain distribution of the structure under operational loading. Finally, on testing the SHM system developed with strain signatures of composite T-joint structures, subjected to variable loading, embedded with all possible damage configurations (including multiple damage scenarios), an overall damage (location & extent) prediction accuracy of 94.1% was achieved. These results are presented and discussed in detail in this paper.


2012 ◽  
Vol 24 (8) ◽  
pp. 991-1006 ◽  
Author(s):  
Oliver J Myers ◽  
George Currie ◽  
Jonathan Rudd ◽  
Dustin Spayde ◽  
Nydeia Wright Bolden

Defects in composite laminates are difficult to detect because of the conductive and paramagnetic properties of composite materials. Timely detection of defects in composite laminates can improve reliability. This research illustrates the preliminary analysis and detection of delaminations in carbon fiber laminate beams using a single layer of magnetostrictive particles and noncontacting concentric magnetic excitation and sensing coils. The baseline analytical models also begin to address the intrusive nature of the magnetostrictive particles as well as relate the applied excitation field with the stress and magnetic flux densities induced in the magnetostrictive layer. Numerical methods are used to begin to characterize the presence of magnetostrictive particles in the laminate and the behavior of the magnetostrictive particles in relationship to the magnetic field used during sensing. Unidirectional laminates with embedded delaminations are used for simulations and experimentations. A novel, yet simplified fabrication method is discussed to ensure consistent scanning and sensing capabilities. The nondestructive evaluation scanning experiments were conducted with various shapes and sizes of damages introduced into carbon fiber–reinforced polymeric composite structures. The results demonstrate high potential for magnetostrictive particles as a low-cost, noncontacting, and reliable sensor for nondestructive evaluation of composite materials.


2018 ◽  
Vol 923 ◽  
pp. 13-16 ◽  
Author(s):  
Salvatore Saputo ◽  
Angela Russo ◽  
Antonio Raimondo ◽  
Barbara Iodice ◽  
Mauro Zarrelli

The fire behaviour of Polymeric composite structures is one of the most critical aerospace research topics. Indeed, the exposure of Polymeric composite structures to high temperatures leads to material decomposition, associated to thermal and mechanical properties degradation. This degradation causes a reduction of the mechanical performances, which can be of main concern for safety reasons. In this paper, the tensile behaviour of Carbon Fibre Composite Polymer specimens, subjected to fire, has been experimentally and numerically investigated. The material properties degradation has been estimated according to an Arrhenius shape function, which relates the mechanical properties of the composite to the temperature. At first, static structural analyses have been carried out to assess the mechanical behaviour of the investigated specimen without fire effects. Then, a coupled thermo-structural analysis allowed evaluating the fire effect on the specimens’ mechanical and the thermal behaviour. In order to preliminary validate the proposed degradation model, the numerical results, in terms of Load versus Displacements curves, have been compared against data obtained from an ad-hoc experimental campaign where fire condition have been suitably replicated during the mechanical tests.


2015 ◽  
Vol 1120-1121 ◽  
pp. 531-534
Author(s):  
Soňa Rusnáková ◽  
Ladislav Fojtl ◽  
Milan Žaludek ◽  
Alexander Čapka ◽  
Vladimír Rusnák

In the present work, mechanical properties and bending stiffness of composite structures with ribs are studied. The aim of this work was making ribbed composite structures in one step, where the ribs are inserted between glass reinforcement of composite system. In practice, the ribs on the composite structure (final products) are glued, but where there is a lower strength (according to the type of surface, the surface treatment, suitable bonding technology, the type of glue) and the adhesives are relatively expensive. The production of samples was used technology of vacuum infusion under flexible foil.


Sign in / Sign up

Export Citation Format

Share Document