scholarly journals High Gain and Reduced Switch Stress DC-DC Converter Topology for PV System

2018 ◽  
Vol 7 (04) ◽  
pp. 23808-23816
Author(s):  
C. Srideepa ◽  
S.Sathish Kumar ◽  
R. Nagarajan

This paper presents a new high step-up isolated DC-DC converter topology for photovoltaic system. The suggested configuration provides a converter with high voltage gain and reduced switch stress by using three coupled inductor with two hybrid voltage multiplier cell. The operation of the proposed converter is based on a charging capacitor with a single switch in its structure. A passive clamp circuit composed of capacitors and diodes is employed in the converter structure for lowering the voltage stress on the power switch as well as increasing the voltage gain of the converter. Since the voltage stress is low in the provided topology, a switch with a small ON-state resistance can be used. As a result, the losses are decreased and the efficiency is increased. The design of DC-DC boost converter is also discussed in detail. Simulation of DC-DC converter is performed in MATLAB/Simulink and the result are verified

2018 ◽  
Vol 27 (12) ◽  
pp. 1850188 ◽  
Author(s):  
Hossein Ajdar Faeghi Bonab ◽  
Mohamad Reza Banaei ◽  
Navid Taghizadegan Kalantari

In this paper, a new transformerless buck–boost converter is introduced. The proposed converter voltage gain is higher that of the conventional buck–boost converter. In the presented converter, only one power switch is used. The switch voltage stress is low, therefore, the low on-state resistance of the power switch can be selected to decrease losses of the switch. The presented converter topology is simple, hence the control of the converter will be simple. The mathematical analyses and principle of the proposed converter are explained. The validity of the proposed converter is confirmed by the experimental results.


Author(s):  
P. Nithin and Dr. R. Rajeswari

In this paper, a novel high voltage gain DC-DC converter based on coupled inductor and voltage multiplier technique is proposed. The benefits of the proposed converter are ultra-high voltage gain, low voltage stress across the power switch and very low input current ripple by employing a low current ripple structure (LCR) at the input side. A low on state resistance (RDS(on)) of the power switch can be employed since the voltage stress is a maximum of 25% of the output voltage and the conduction losses of the switch is also reduced. Design of a 1.9kW, 48V at the low voltage side and 430V at the high voltage side is done and verified by simulation. Simulation results show an efficiency of over 93% when operating in continuous conduction mode (CCM).


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shanthi Thangavelu ◽  
Prabha Umapathy

A new topology for high step-up nonisolated DC-DC converter for solar PV applications is presented in this paper. The proposed high-voltage gain converter topology has many advantages like low-voltage stress on the switches, high gain with low duty ratio, and a continuous input current. The analytical waveforms of the proposed converter are presented in continuous and discontinuous modes of operation. Voltage stress analysis is conducted. The voltage gain and efficiency of the converter in presence of parasitic elements are also derived. Performance comparison of the proposed high-gain converter topology with the recently reported high-gain converter topologies is presented. Validation of theoretical analysis is done through the test results obtained from the simulation of the proposed converter. For the maximum duty ratio of 80%, the output voltage of 670 V is observed, and the voltage gain obtained is 14. Comparison of theoretical and simulation results is presented which validates the performance of the proposed converter.


Author(s):  
G.Vijaykumar and Dr.V.Geetha

A high voltage gain modified SEPIC converter is proposed in this paper. This proposed converter has many advantages i.e., high output voltage, lower voltage stress, high efficiency, voltage gain is high without any coupled inductor and transformer, continuous input current. Thus, there is no overshoot voltage at turn-off process for switches. By using single switches, the CCM mode operation can be easily controlled by this converter, so control system is simple and also wide output values is obtained only by modifying the duty cycle. This modified converter has lower components than conventional converter. The operating modes and design of modified converter are discussed. The output power of this converter is 6 watts. By this converter, this converter capable of developing the two and half times of input voltage. The PV system also used this converter to develop high voltage gain. This high voltage gain is achieved by using MATLAB/SIMULIMK platform.


Author(s):  
Pavan Prakash Gupta ◽  
G. Indira Kishore ◽  
Ramesh Kumar Tripathi

In the class of the boost converters, the conventional DC–DC boost converters are in common practice but their limited boost capabilities at higher duty ratios are one of the concerns. The isolated and non-isolated step-up DC–DC converters are one of the remedies of the above issue. The presence of switched inductor and switched capacitors in the circuit of non-isolated configuration can provide considerable step-up in voltage at the output, and also facilitate lower voltage stress on components. In this paper, work has been done to propose three non-isolated high-voltage gain DC–DC boost converter topologies. Along with the high voltage gain, the topologies also have lesser voltage stress across the active power switches and diodes used in topologies. The proposed topologies are suitable for low dc input levels like renewable sources, microgrid and grid-connected applications. A Matlab/Simulink 2017a environment is utilized to derive, design and simulate the proposed topologies for a 100-W load operation. The basic topology is also realized in hardware as a prototype circuit with 100-W resistive load, operated at 50[Formula: see text]kHz switching frequency.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hongzhu Li ◽  
Ling Zhu ◽  
Le Wang

High-voltage gain converter has a high-frequency use in some industrial fields, for instance, the fuel cell system, the photovoltaic system, electric vehicles, and the high-intensity discharge lamp. In order to solve the problem of the low-voltage gain of traditional boost converter, the double-boost converter with coupled inductance and doubled voltage is proposed, which connects the traditional boost converter in parallel. The voltage gain of the converter is further improved by introducing the voltage-doubled unit of the coupled inductance. Moreover, the clamp capacitor can absorb the leakage inductance in the circuit and reduce the voltage stress of the switch. In addition, two coupled inductors are magnetically collected; then, the loss of the core is analyzed under the same gain. The detailed analysis of the proposed converter and a comparison considering other topologies previously published in the literature are also presented in this article. In order to verify the proposed converter performance, a prototype has been built for a power of 200 W, input and output voltages of 12 and 84 V, respectively, and a switching frequency of 50 kHz. Experimental results validate the effectiveness of the theoretical analysis proving the satisfactory converter performance, whose peak efficiency is 95.5%.


In this paper, a non-isolated two interleaved modified step up KY Converter is analyzed and designed, whose efficiency, the voltage conversion ratio is high. There are various types of non -isolated converters such as buck-boost, Cuk, SEPIC, ZETA converters, etc but the voltage gain of these converters is less compare to the proposed interleaved KY converters. The voltage gain, efficiency of the proposed converter is enhanced compared to the previous converters. The voltage stress on semi-conductor devices and the ripple in the input current is reduced because of this interleaving technique. Switches with low on-state resistance are used due to which the conduction losses are reduced. Steady-state analysis and the operating principle are studied in continuous conduction mode (CCM) at ideal conditions. Simulation is also carried out in MATLAB/Simulink for the proposed interleaved KY converter.


Author(s):  
Yong-Seng Wong ◽  
Jiann-Fuh Chen ◽  
Kuo-Bin Liu

A high step-up DC-to-DC converter that integrates an isolated transformer and a switched-clamp capacitor is presented in this study. The voltage stress of the main power switch should be clamped to 1/4 V by using the turn ratio and switched-clamp capacitor of an isolated transformer to achieve a high voltage gain. In addition, a passive clamp circuit is employed reduce voltage stress on the main power switch. The energy of the leakage inductor can be recycled by the clamp capacitor because of the passive clamp circuit, thereby improving the power converter efficiency. The converter consists of one isolated transformer, one main switch, three capacitors, and four diodes. Operating principle and steady-state analyses are also discussed. Finally, a 24-V-input voltage to 200-V-output voltage and a 150 W output power prototype converter are fabricated in the laboratory. The maximum efficiency of the converter is 95.1 at 60 W.


This paper presents the removal of initial phase transient currents in an existing dc-dc boost converter topology with the help of a modified switched inductor cell. In an earlier proposed topology, a novel single switch boost converter was proposed with high voltage gain, which however gave a high initial transient current of the order of 26kA on simulating in MATLAB Simulink environment. This initial phase current was removed by placing a small valued inductor and a freewheeling diode in series with boost capacitor. The inductor is placed in parallel with the diode and creates an open circuit initially, this arrangement limits the current to a bearable value, i.e. approximately 180A, without compromising with the high gain of the cell. The results of the proposed modifications are validated using MATLAB Simulink.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3032 ◽  
Author(s):  
Hongchen Liu ◽  
Xi Su ◽  
Junxiong Wang

In this paper, two types of high step-up coupled inductor inverters based on qSBIs (quasi- switched boost inverters) are proposed. By applying the coupled inductor to the qSBIs, the voltage gain of the proposed inverter is regulated by turn ratio and duty ratio. Thus, a high voltage gain can be achieved without the circuits operating at the extreme duty cycle by choosing a suitable turn ratio of the coupled inductor. In addition, the proposed circuits have the characteristics of continuous input current and low voltage stress across the passive components. A boost unit can be added to the proposed inverters for further improvement of the voltage gain. In this paper, the working principle, steady state analysis, and the comparisons of the proposed inverter with other impedance-source inverters are described. A 200 W prototype was created and the experimental results confirm the correctness of the analysis in this paper.


Sign in / Sign up

Export Citation Format

Share Document