scholarly journals EXPERIMENTAL AND NUMERICAL STUDY OF A VENTURI TUBE AS A DIDACTIC TOOL FOR CHEMICAL ENGINEERING LEARNING

2020 ◽  
Vol 6 (3) ◽  
pp. 0409-0415
Author(s):  
Felipe Orlando Da Costa ◽  
Jéssica Trindade Martins ◽  
Caio Guilherme Sales Ferreira ◽  
Giovanna Kellen Tavares de Andrade ◽  
Felipe Leonardo Barcelos Mateus ◽  
...  

The Venturi tube measures the fluid’s flowrate by use of an obstruction in the flow path. As a tool to understand the fundamental principles of Chemical Engineering, an experimental device for flow measurement integrating a Venturi tube was developed in the course of the Chemical Engineering Projects I from the Federal University of Lavras. The system was constructed with materials of low-cost and easy access. The experimental results for the flow and pressure drop were compared with theorical values and with additional data obtained by the use of a numerical and computational method (CFD). The discharge coefficient was 0.680 ± 0.018 [-], an intermediate value of those found in the literature for orifice plate and flow nozzle meters. The numerical method was successfully able to predict the pressure drop in the system.

Author(s):  
Fabian Burmann ◽  
Jerome Noir ◽  
Stefan Beetschen ◽  
Andrew Jackson

AbstractMany common techniques for flow measurement, such as Particle Image Velocimetry (PIV) or Ultrasonic Doppler Velocimetry (UDV), rely on the presence of reflectors in the fluid. These methods fail to operate when e.g centrifugal or gravitational acceleration leads to a rarefaction of scatterers in the fluid, as for instance in rapidly rotating experiments. In this article we present two low-cost implementations for flow measurement based on the transit time (or Time of Flight) of acoustic waves, that do not require the presence of scatterers in the fluid. We compare our two implementations against UDV in a well controlled experiment with a simple oscillating flow and show we can achieve measurements in the sub-centimeter per second velocity range with an accuracy of $\sim 5-10\%$ ∼ 5 − 10 % . We also perform measurements in a rotating experiment with a complex flow structure from which we extract the mean zonal flow, which is in good agreement with theoretical predictions.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4417
Author(s):  
Tingting Xu ◽  
Hongxia Zhao ◽  
Miao Wang ◽  
Jianhui Qi

Printed circuit heat exchangers (PCHEs) have the characteristics of high temperature and high pressure resistance, as well as compact structure, so they are widely used in the supercritical carbon dioxide (S-CO2) Brayton cycle. In order to fully study the heat transfer process of the Z-type PCHE, a numerical model of traditional Z-type PCHE was established and the accuracy of the model was verified. On this basis, a new type of spiral PCHE (S-ZPCHE) is proposed in this paper. The segmental design method was used to compare the pressure changes under 5 different spiral angles, and it was found that increasing the spiral angle θ of the spiral structure will reduce the pressure drop of the fluid. The effects of different spiral angles on the thermal-hydraulic performance of S-ZPCHE were compared. The results show that the pressure loss of fluid is greatly reduced, while the heat transfer performance is slightly reduced, and it was concluded that the spiral angle of 20° is optimal. The local fluid flow states of the original structure and the optimal structure were compared to analyze the reason for the pressure drop reduction effect of the optimal structure. Finally, the performance of the optimal structure was analyzed under variable working conditions. The results show that the effect of reducing pressure loss of the new S-ZPCHE is more obvious in the low Reynolds number region.


Uro ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 39-44
Author(s):  
Mehmet Gürkan Arıkan ◽  
Göktan Altuğ Öz ◽  
Nur Gülce İşkan ◽  
Necdet Süt ◽  
İlkan Yüksel ◽  
...  

There have been few studies reported with conflicting results in the use of neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), redcell-distribution-width (RDW), etc. for predicting prognosis and differential diagnosis of adrenal tumors. The aim of this study is to investigate the role of inflammatory markers through a complete blood count, which is an easy access low-cost method, for the differential diagnosis of adrenocortical adenoma (ACA), adrenocortical carcinoma (ACC), and pheochromocytoma. The data of patients who underwent adrenalectomy between the years of 2010–2020 were retrospectively analyzed. Systemic hematologic inflammatory markers based on a complete blood count such as neutrophil ratio (NR), lymphocyte ratio (LR), NLR, PLR, RDW, mean platelet volume (MPV), and maximum tumor diameter (MTD) were compared between the groups. A statistically significant difference was found between the three groups in terms of PLR, RDW, and MTD. With post-hoc tests, a statistically significant difference was found in PLR and MTD between the ACA and ACC groups. A statistically significant difference was found between the ACA and pheochromocytoma groups in PLR and RDW values. In conclusion, it could be possible to plan a more accurate medical and surgical approach using PLR and RDW, which are easily calculated through an easy access low-cost method such as a complete blood count, together with MTD in the differential diagnosis of ACC, ACA, and pheochromocytoma.


2008 ◽  
Vol 17 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Bo Song ◽  
Yanhui Feng ◽  
Xinxin Zhang

2002 ◽  
Vol 46 (03) ◽  
pp. 186-200 ◽  
Author(s):  
Pierre C. Sames ◽  
Delphine Marcouly ◽  
Thomas E. Schellin

To validate an existing finite volume computational method, featuring a novel scheme to capture the temporal evolution of the free surface, fluid motions in partially filled tanks were simulated. The purpose was to compare computational and experimental results for test cases where measurements were available. Investigations comprised sloshing in a rectangular tank with a baffle at 60% filling level and in a cylindrical tank at 50% filling level. The numerical study started with examining effects of systematic grid refinement and concluded with examining effects of three-dimensionality and effects of variation of excitation period and amplitude. Predicted time traces of pressures and forces compared favorably with measurements.


Author(s):  
Massine GANA ◽  
Hakim ACHOUR ◽  
Kamel BELAID ◽  
Zakia CHELLI ◽  
Mourad LAGHROUCHE ◽  
...  

Abstract This paper presents a design of a low-cost integrated system for the preventive detection of unbalance faults in an induction motor. In this regard, two non-invasive measurements have been collected then monitored in real time and transmitted via an ESP32 board. A new bio-flexible piezoelectric sensor developed previously in our laboratory, was used for vibration analysis. Moreover an infrared thermopile was used for non-contact temperature measurement. The data is transmitted via Wi-Fi to a monitoring station that intervenes to detect an anomaly. The diagnosis of the motor condition is realized using an artificial neural network algorithm implemented on the microcontroller. Besides, a Kalman filter is employed to predict the vibrations while eliminating the noise. The combination of vibration analysis, thermal signature analysis and artificial neural network provides a better diagnosis. It ensures efficiency, accuracy, easy access to data and remote control, which significantly reduces human intervention.


Sign in / Sign up

Export Citation Format

Share Document