STUDY OF THE INFLUENCE OF DIFFERENT TYPES OF HEAT TREATMENT ON THE STRUCTURE AND STRENGTH PROPERTIES OF HIGH-STRENGTH MARTENSITIC AGING STEELS

2018 ◽  
pp. 3-11
Author(s):  
I.L. Polunov ◽  
2019 ◽  
Vol 130 ◽  
pp. 01023
Author(s):  
Pritamara Wahyuningtyas ◽  
Anne Zulfia Syahrial ◽  
Wahyuaji Narottama Putra ◽  
Budi Wahyu Utomo

A study of ADC12 (Al-Si aluminium alloy) composite is conducted to obtain a more sustainable material with enhanced properties for automotive industry purpose, such as train's brake shoe and bearing application. For those kind of utilization, material with durability, good elastic modulus, thermal stability, wear resistance, and high strength properties is needed due to its exposure to high temperature and heavy continuous application. ADC 12 acts as the matrix, reinforced with 3 vf% micro-SiC with 5 wt% Mg wetting agent was fabricated by the stir casting method. The addition of 0.18 wt% Sr and 0.15 wt% TiB were expected to finer the grain morphology of the silicone eutectic phase and to acts as the grain refiner, respectively. Furthermore, T6 heat treatment was applied with aging temperature 150 °C, 170 °C, 190 °C, 210 °C, and 230 °C, following the prior 1 h 490 °C solution treatment. The results obtained in this work showed enhancement in tensile strength with the value of 213 MPa, hardness value 75 HRB, and wear resistance. These values increase up to 115 MPa for the UTS and 38 HRB for the hardness value, as the impact of the refined grains from both modifiers and heat treatment.


2013 ◽  
Vol 58 (1) ◽  
pp. 25-30 ◽  
Author(s):  
G. Golanski ◽  
J. Słania

The paper presents a research on the influence of multistage heat treatment with the assumed parameters of temperature and time on the microstructure and mechanical properties of high-chromium martensitic GX12CrMoVNbN9-1 (GP91) cast steel. In the as-cast state GP91 cast steel was characterized by a microstructure of lath martensite with numerous precipitations of carbides of the M23C6, M3C and NbC type, with its properties higher than the required minimum. Hardening of the examined cast steel contributes to obtaining a microstructure of partly auto-tempered martensite of very high strength properties and impact strength KV on the level of 9-15 J. Quenching and tempering with subsequent stress relief annealing of GP91 cast steel contributed to obtaining the microstructure of high-tempered lath martensite with numerous precipitations of the M23C6 and MX type of diverse size. The microstructure of GP91 cast steel received after heat treatment was characterized by strength properties (yield strength, tensile strength) higher than the required minimum and a very high impact energy KV. It has been proved that GP91 cast steel subject to heat treatment No. 2 as a result of two-time heating above the Ac3 temperature is characterized by the highest impact energy.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1305
Author(s):  
Olga Klimova-Korsmik ◽  
Gleb Turichin ◽  
Ruslan Mendagaliyev ◽  
Sergey Razorenov ◽  
Gennady Garkushin ◽  
...  

In this work, the critical fracture stresses during spalling of high-strength steel 09CrNi2MoCu samples obtained by direct laser deposition (DLD) were measured under shock compression of up to ~5.5 GPa. The microstructure and mechanical properties of DLD steel samples in the initial state and after heat treatment were studied and compared to traditional hot rolled one. The microstructural features of steel before and after heat treatment were revealed. The heat treatment modes of the deposit specimens on their strength properties under both static and dynamic loads have been investigated. The spall strength of the deposited specimens is somewhat lower than the strength of steel specimens after hot rolling regardless of their heat treatment. The minimum elastic limit of elasticity is exhibited by the deposit specimens. After heat treatment of the deposit samples, the elastic limit increases and approximately doubles. Subsequent heat treatment in the form of hardening and tempering allows obtaining strength properties under Hugoniot loads in traditional hot-rolled products.


2021 ◽  
Author(s):  
Thabisile Brightwell Jele ◽  
Prabashni Lekha ◽  
Bruce Sithole

Abstract The pursuit for sustainability in the papermaking industry calls for the elimination or reduction of synthetic additives and the exploration of renewable and biodegradable alternatives. Cellulose nanofibrils (CNFs), due to their inherent morphological and biochemical properties, are an excellent alternative to synthetic additives. These properties enable CNFs to improve the mechanical, functional and barrier properties of different types of paper. The nanosize diameter, micrometre length, semi-crystalline structure, high strength and modulus of CNFs has a direct influence on the mechanical properties of paper such as tensile index, burst index, Scott index, breaking length, tear index, Z-strength, E-modulus, strain at break, and tensile stiffness. This review details the role played by CNFs as an additive to improve strength properties of papers and the factors affecting the improvement in paper quality when CNFs are added as additives. The paper also includes techno-economic aspects of the process and identifies areas that need further research.


Alloy Digest ◽  
2000 ◽  
Vol 49 (8) ◽  

Abstract Nicomet 1 is a copper-nickel-tin alloy that has high strength because of spinodal decomposition in heat treatment. The alloy could replace aluminum and manganese bronzes. A typical application utilizes both the good antifriction and high strength properties. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on wear resistance as well as heat treating. Filing Code: CU-652. Producer or source: Anchor Bronze & Metals, Inc.


2021 ◽  
Vol 410 ◽  
pp. 241-245
Author(s):  
Boris P. Yur'ev ◽  
Vladimir I. Matiukhin ◽  
Vyacheslav A. Dudko

Mine rocks generated abundantly in the course of iron-ore deposit development and containing high quality overburden chalkstone are mainly stored in dump pits. This relates to the Lebedinsky Mining and Processing Works as well. This results in certain environmental issues. Therefore the work provides the investigation results in some measure allowing the defined problem solution through complete replacement of limestone used for iron-ore pellet fluxing by the overburden chalkstone. This required a whole set of experiments. Derivatographic investigation was carried out on the overburden chalkstone samples of the Lebedisky Mining and Processing Works and allowed defining of the studied sample temperature and heating time impact on production of chalkstone with varying decarbonization process extent. Activity of the lime produced from the chalkstone was evaluated through determination of the total content of active calcium and magnesium oxides in it. In the course of the experiments the temperature and time impact on the liming process was defined. To justify the potential of the overburden chalkstone use as an additive for iron-ore pellet fluxing and their production with sufficiently high strength properties ensured, as well as of the complete replacement of the limestone used for these purposes, the experiments with the briquettes were carried out. At that the briquette composition complied with that of the fluxed iron-ore pellets. The briquette strength properties with chalkstone additives versus the firing temperature and degree were studies, as well as physicochemical processes occurring in the samples at their heat treatment. As a result of the investigation it was determined that the chalkstone additive use in the pellet fluxing contributes to their significant strength increase. The obtained results are of certain interest for the specialists dealing with iron ore material preparation for metallurgical conversion and allow development of pellet heat treatment conditions ensuring their high metallurgical performance.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 653-664
Author(s):  
IGNACIO DE SAN PIO ◽  
KLAS G. JOHANSSON ◽  
PAUL KROCHAK

Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and bentonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.


Alloy Digest ◽  
2000 ◽  
Vol 49 (10) ◽  

Abstract CMW 100 is a copper alloy that combines high tensile strength with high electrical and thermal conductivity. It responds to age-hardening heat treatment. It is used for flash welding dies, springs, electrical components, high-strength backing material for brazed assemblies, and wire guides. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-29. Producer or source: CMW Inc. Originally published as Mallory 100, August 1955, revised October 2000.


Alloy Digest ◽  
1964 ◽  
Vol 13 (7) ◽  

Abstract CONFLEX 720 is a copper-manganese-nickel alloy that responds to an age-hardening heat treatment for high strength and corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: Cu-143. Producer or source: Metals & Controls Inc..


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document