scholarly journals Src kinase inhibition restores E-cadherin expression in dasatinib-sensitive pancreatic cancer cells

Oncotarget ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 1056-1069 ◽  
Author(s):  
Austin R. Dosch ◽  
Xizi Dai ◽  
Alexander A. Gaidarski III ◽  
Chanjuan Shi ◽  
Jason A. Castellanos ◽  
...  
2002 ◽  
Vol 87 (9) ◽  
pp. 1034-1041 ◽  
Author(s):  
J J French ◽  
J Cresswell ◽  
W K Wong ◽  
K Seymour ◽  
R M Charnley ◽  
...  

2018 ◽  
Vol 40 (6) ◽  
pp. 805-818 ◽  
Author(s):  
Sharleen V Menezes ◽  
Leyla Fouani ◽  
Michael L H Huang ◽  
Bekesho Geleta ◽  
Sanaz Maleki ◽  
...  

AbstractThe metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), plays multifaceted roles in inhibiting oncogenic signaling and can suppress the epithelial mesenchymal transition (EMT), a key step in metastasis. In this investigation, NDRG1 inhibited the oncogenic effects of transforming growth factor-β (TGF-β) in PANC-1 pancreatic cancer cells, promoting expression and co-localization of E-cadherin and β-catenin at the cell membrane. A similar effect of NDRG1 at supporting E-cadherin and β-catenin co-localization at the cell membrane was also demonstrated for HT-29 colon and CFPAC-1 pancreatic cancer cells. The increase in E-cadherin in PANC-1 cells in response to NDRG1 was mediated by the reduction of three transcriptional repressors of E-cadherin, namely SNAIL, SLUG and ZEB1. To dissect the mechanisms how NDRG1 inhibits nuclear SNAIL, SLUG and ZEB1, we assessed involvement of the nuclear factor-κB (NF-κB) pathway, as its aberrant activation contributes to the EMT. Interestingly, NDRG1 comprehensively inhibited oncogenic NF-κB signaling at multiple sites in this pathway, suppressing NEMO, Iĸĸα and IĸBα expression, as well as reducing the activating phosphorylation of Iĸĸα/β and IĸBα. NDRG1 also reduced the levels, nuclear co-localization and DNA-binding activity of NF-κB p65. Further, Iĸĸα, which integrates NF-κB and TGF-β signaling to upregulate ZEB1, SNAIL and SLUG, was identified as an NDRG1 target. Considering this, therapies targeting NDRG1 could be a new strategy to inhibit metastasis, and as such, we examined novel anticancer agents, namely di-2-pyridylketone thiosemicarbazones, which upregulate NDRG1. These agents downregulated SNAIL, SLUG and ZEB1 in vitro and in vivo using a PANC-1 tumor xenograft model, demonstrating their marked potential.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e21035-e21035
Author(s):  
Laura Visa ◽  
Esther Samper ◽  
Mariana Rickmann ◽  
Antonio Postigo ◽  
Esther Sanchez-Tillo ◽  
...  

e21035 Background: EMT renders neoplastic cancer cells the ability to migrate and to invade distant organs. The hallmark of EMT is the loss of E-cadherin, which is a prerequisite for epithelial tumor cell invasion. In pancreatic cancer, loss of tumor E-cadherin is an independent predictor of poor outcome. Aims: To analyze the effect of pancreatic fibroblasts (PF) on inducing EMT in pancreatic cancer cells and to identify the transcription factors (Snail, Slug, ZEB1, ZEB2) that mediate EMT process. Methods: Human PFs were isolated from human pancreatic specimens obtained from chronic pancreatitis and from unaffected margins of pancreatic adenocarcinoma and serous cistoadenoma. PF were cultured until complete cellular activation, as assessed by expression of α-smooth muscle actin, vimentin and fibronectin. Human pancreatic cancer cells Panc-1 were exposed to PF conditioned medium (PF-CM) and EMT analyzed by cell morphology, migration, and E-cadherin expression (quantitative RT-PCR and immunoblot). Gene expression of Snail, Slug, ZEB1, and ZEB2 was analyzed by quantitative RT-PCR, and their activity modulated by siRNA Results: Conditioned media from all types of activated PFs induced EMT changes in Panc-1 cells, as shown by 1) morphological transition from cobblestone shaped to fibroblast-like cells, 2) stimulation of cell migration, and 3) E-cadherin down–regulation; mRNA expression of Snail transiently increased at 30 min after exposure to PF returning to basal levels afterwards; mRNA levels of ZEB1 were not up-regulated upon exposure to PF-CM. However, ZEB1 protein greatly accumulated after 48h incubation with PF-CM, suggesting that PF prevent ZEB1 degradation in Panc-1 cells. Combined RNA downregulation of ZEB1 and ZEB2, but not of Snail and/or Slug, suppressed E-cadherin repression induced by PF. Conclusions: Activated PFs promote the invasive phenotype of pancreatic cancer cells through ZEB1 and ZEB2 activation.


2009 ◽  
Vol 380 (3) ◽  
pp. 614-619 ◽  
Author(s):  
Shima Kumei ◽  
Wataru Motomura ◽  
Takayuki Yoshizaki ◽  
Kaoru Takakusaki ◽  
Toshikatsu Okumura

2021 ◽  
Author(s):  
Yuchong Zhao ◽  
Yun Wang ◽  
Wei Chen ◽  
Shuya Bai ◽  
Wang Peng ◽  
...  

Abstract Background: Due to the lack of effective interference options, early metastasis remains a major cause of pancreatic ductal adenocarcinoma (PDAC) recurrence and mortality. However, the molecular mechanism of early metastasis is largely unknown. We characterize the function of eukaryotic translation initiation factors (eIFs) in Pancreatic cancer cell epithelial mesenchymal-transition (EMT) and metastasis, to investigate whether it is effective to inhibit EMT and metastasis by joint interference of eIFs and downstream c-MYC. Methods: We used the data of The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) to analyze the expression level of eIF4A1 in PDAC tissues, and further validated in a microarray containing 53 PDAC samples. Expression regulation and pharmacological inhibition of eIF4A1/c-MYC was performed to determine their role in migration, invasion, and metastasis in pancreatic cancer cells in vitro and in vivo.Results: Elevated expression of eIF4A1 was positively correlated with lymph node infiltration, tumor size, and indicated a poor prognosis. eIF4A1 decreased E-cadherin expression through c-MYC/miR-9 axis. Ablation of eIF4A1 and c-MYC decreased the EMT and metastasis capabilities of pancreatic cancer cells. Upregulation of eIF4A1 could attenuate the inhibition of EMT and metastasis induced by c-MYC downregulation. Single-use of eIF4A1 inhibitor Rocaglamide (RocA) or c-MYC inhibitor Mycro3 and joint intervention all significantly the EMT level of pancreatic cancer cells in vitro. However, the efficiency and safety of RocA single-use were not inferior to joint use in vivo. Conclusion: The results demonstrated that overexpression of eIF4A1 downregulated E-cadherin through c-MYC/miR-9 axis, which promoted EMT and metastasis of pancreatic cancer cells. Despite the potential loop between eIF4A1 and c-MYC existing, RocA single strategy was a promising therapy for the inhibition of eIF4A1 induced PDAC metastasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuchong Zhao ◽  
Yun Wang ◽  
Wei Chen ◽  
Shuya Bai ◽  
Wang Peng ◽  
...  

Abstract Background Owing to the lack of effective treatment options, early metastasis remains the major cause of pancreatic ductal adenocarcinoma (PDAC) recurrence and mortality. However, the molecular mechanism of early metastasis is largely unknown. We characterized the function of eukaryotic translation initiation factors (eIFs) in epithelial-mesenchymal-transition (EMT) and metastasis in pancreatic cancer cells to investigate whether eIFs and downstream c-MYC affect EMT and metastasis by joint interference. Methods We used The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to analyze eIF4A1 expression in PDAC tissues and further validated the findings with a microarray containing 53 PDAC samples. Expression regulation and pharmacological inhibition of eIF4A1 and c-MYC were performed to determine their role in migration, invasion, and metastasis in pancreatic cancer cells in vitro and in vivo. Results Elevated eIF4A1 expression was positively correlated with lymph node infiltration, tumor size, and indicated a poor prognosis. eIF4A1 decreased E-cadherin expression through the c-MYC/miR-9 axis. Loss of eIF4A1 and c-MYC decreased the EMT and metastasis capabilities of pancreatic cancer cells, whereas upregulation of eIF4A1 attenuated the inhibition of EMT and metastasis induced by c-MYC downregulation. Treatment with the eIF4A1 inhibitor rocaglamide (RocA) or the c-MYC inhibitor Mycro3 either alone or in combination significantly decreased the expression level of EMT markers in pancreatic cancer cells in vitro. However, the efficiency and safety of RocA alone were not inferior to those of the combination treatment in vivo. Conclusion Overexpression of eIF4A1 downregulated E-cadherin expression through the c-MYC/miR-9 axis, which promoted EMT and metastasis of pancreatic cancer cells. Despite the potential feedback loop between eIF4A1 and c-MYC, RocA monotherapy is a promising treatment inhibiting eIF4A1-induced PDAC metastasis.


Sign in / Sign up

Export Citation Format

Share Document