scholarly journals Comparison of Building Materials for Low-Rise Buildings Based on Environmental Footprint

Materials ◽  
2017 ◽  
Author(s):  
Maja Žigart ◽  
Rebeka Lukman Kovačič ◽  
Miroslav Premrov ◽  
Vesna Žegarac Leskovar
2012 ◽  
Vol 518-523 ◽  
pp. 4425-4430
Author(s):  
Li Ping He ◽  
Yu Chen ◽  
Xue Ru Wang

The enormous consumption of resources and energy of construction industry results in severe environmental pollution. From both the views of energy consumption and environmental footprint, this article analyzed theoretically the energy consumption and environmental benefits on life cycle of wood-frame building, in order to determine the general impact on environment by appropriate building materials, so that some ideas for development of wood-frame architecture can be concluded.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Cesare Signorini ◽  
Antonella Sola ◽  
Sumit Chakraborty ◽  
Valentina Volpini

Cement and lime currently are the most common binders in building materials. However, alternative materials and methods are needed to overcome the functional limitations and environmental footprint of conventional products. This Special Issue is entirely dedicated to “New frontiers in cementitious and lime-based materials and composites” and gathers selected reviews and experimental articles that showcase the most recent trends in this multidisciplinary field. Authoritative contributions from all around the world provide important insights into all areas of research related to cementitious and lime-based materials and composites, spanning from structural engineering to geotechnics, including materials science and processing technology. This topical cross-disciplinary collection is intended to foster innovation and help researchers and developers to identify new solutions for a more sustainable and functional built environment.


2020 ◽  
pp. 224-224
Author(s):  
Davor Koncalovic ◽  
Vladimir Vukasinovic ◽  
Dubravka Zivkovic ◽  
Dusan Gordic ◽  
Ana Dzokic ◽  
...  

Sustainable housing is a worldwide challenge, while the case of Serbia could be an example of how complex the circumstances can be and how difficult it is to see the path towards sustainability. This paper sets out to answer multiple challenges; can energy-efficient, low-impact housing enter the market and respond to the needs of its population, potentially contributing to a more affordable and future-proof housing reality in Serbia? And does this demand rather different measures than the ones conventionally explored in innovative housing approaches elsewhere? To answer these questions, the paper starts from the preview of circumstances, then the methodology is proposed and explained, after which the possible building materials and technical installations for pilot multi-apartment Passive House are selected, and in the end, results are given and conclusions are drawn. Since the building is intended for a housing cooperative, both the affordability of the proposed solution and the environmental footprint has been comprehended by the methodology proposed. In the end, by carefully balancing the benefits of individual measures - favouring those that are cost-effective and discouraging the implementation of measures that are not, a viable pilot project that could step into the market-oriented society is selected.


Author(s):  
Maroua Maaroufi ◽  
Kamilia Abahri ◽  
Alexandra Bourdot ◽  
Chady El Hachem

Buildings are responsible for a large portion of the total energy consumption, and have a heavy environmental impact. Wood is one of the most used bio-based building materials, as it helps reducing the environmental footprint of the construction sector. Spruce wood is widely available in France and therefore massively used in buildings. It has interesting thermal and acoustic insulation performances and a good hydric regulation property. Spruce wood microstructure is highly heterogeneous and multiphasic, which makes it harder to apprehend. On the other hand, sorption hysteresis phenomenon is responsible for the moisture accumulation in porous building materials. It is often neglected in hygrothermal transfers modelling, which leads to incorrect water content values. The aim of this work is to investigate the influence of the sorption hysteresis phenomenon on the hydric transfers of spruce wood. The heterogeneity of the microstructure is also considered through 3D tomographic reconstructions included in the modelling.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012167
Author(s):  
Mélanie Horvath ◽  
Sophie Trachte ◽  
Thomas Pardoen

Abstract A new class of sustainable building composite materials is developed, made out of recycled fibers waste, of sand from crushing inert waste and of lime. The fibers come from abundant and available bio-based or mineral fibers such as cellulose, glass wool, or rock wool. The crushing sand comes from inert building waste and is used instead of river sand which is a resource under shortage. Lime is, like the other two constituents, available locally. The targeted performance is minimizing the environmental footprint compared to the current building materials available on the market in terms of CO2 emissions and grey energy consumption over the entire life cycle. Additional specific objectives are a lifetime up to 60 years, the incorporation of at least 75% recycled or end-of-cycle materials and a high potential of further reuse or recycling. These performances must be optimized under all the structural, thermal and durability constraints of specific building applications. A test campaign has proved the energy-efficient nature of the processing and excellent potential in terms of insulation, fire resistance and mechanical strength, for materials containing a rate of paper fibers larger than 50%.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


Author(s):  
Mykhailo Kosmii ◽  
Vasyl. Kasiianchuk ◽  
Ruslan Zhyrak ◽  
Ivan Krykhovetskyi

The purpose of this paper is to analyze and research the legal mechanisms which make it possible to improve agroecology through the organization of cultivation of Jerusalem artichoke.Methodology. The methodology includes comprehensive analysis and generalization of available scientific, theoretical, practical and applied material and development of relevant conclusions and recommendations. During the research, the following methods of scientific cognition were used: dialectical, terminological, historical and legal, logical and normative, systemic and structural, functional, normative and dogmatic, generalization methods. Results. The process of analysis and research highlighted the possibilities of cultivating Jerusalem artichoke for improving agroecology, namely improving the ecological state of the atmosphere air and soil, preparing them for organic farming. The article contains examples of practical application of tubers of Jerusalem artichoke and herbage for the production of therapeutic and prophylactic products, alternative energy and highly efficient building materials. Scientific novelty. The study found that the authors summarized and systematized the levels of legal regulation in the field of using Jerusalem artichoke for improving agroecology, preparing soil for organic farming, in particular: the inter-sectoral level which covers the interaction of agricultural and environmental law in terms of cultivation and use of Jerusalem artichoke; the level of integrated environmental and legal regulation; level of individual resource (floristic) legal regulation; the level of environmental protection (anthropoprotection) legislation.Practical importance. The results of the study can be used in law-making and environmental protection activities related to issues of cultivating and using the Jerusalem artichoke as a means of improving agroecology.


Sign in / Sign up

Export Citation Format

Share Document