Analysis of the Factors Affecting the Instrumentation of the Technological Process of the Activated Carbon Material Production

Author(s):  
A.A. Popova ◽  
I.N. Shubin

The article discusses significance of the development of activated carbon materials with a high specific surface area and high porosity. The features of the course of chemical activation and the factors influencing the characteristics of the obtained material have been established. The main stages of the activation of the carbon material, including the preliminary raw carbon material carbonization, its alkaline activation, and the post-processing of the created material, have been determined. The mutual influence of temperature and flow rate of an inert gas on the characteristics of a carbon material obtained with a BET specific surface in the range of 2550–2700 m2/g is experimentally investigated. The analysis of the obtained results has been carried out. Recommendations are given for reducing ambiguity and uncertainty during the transition from laboratory research to pilot production. The resulting activated carbon material can be used as a sorbent in gas purification systems, gas accumulators and for solving various environmental problems.

TANSO ◽  
1996 ◽  
Vol 1996 (172) ◽  
pp. 95-99 ◽  
Author(s):  
Katsuhiko Muroyama ◽  
Jun'ichi Hayashi ◽  
Atsushi Sato ◽  
Susumu Takemoto

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1004 ◽  
Author(s):  
João Nogueira ◽  
Maria António ◽  
Sergey Mikhalev ◽  
Sara Fateixa ◽  
Tito Trindade ◽  
...  

Porous carbon materials derived from biopolymers are attractive sorbents for the removal of emerging pollutants from water, due to their high specific surface area, high porosity, tunable surface chemistry, and reasonable cost. However, carrageenan biopolymers were scarcely investigated as a carbon source to prepare porous carbon materials. Herein, hydrochars (HCs) and porous activated carbons (ACs) derived from natural occurring polysaccharides with variable sulfate content (κ-, ι- and λ-carrageenan) were prepared and investigated in the uptake of ciprofloxacin, which is an antibiotic detected in water sources and that poses serious hazards to public health. The materials were prepared using hydrothermal carbonization and subsequent chemical activation with KOH to increase the available surface area. The activated carbons were markedly microporous, presenting high specific surface area, up to 2800 m2/g. Activated carbons derived from κ- and λ-carrageenan showed high adsorption capacity (422 and 459 mg/g, respectively) for ciprofloxacin and fast adsorption kinetics, reaching the sorption equilibrium in approximately 5 min. These features place the ACs investigated here among the best systems reported in the literature for the removal of ciprofloxacin from water.


Carbon ◽  
1996 ◽  
Vol 34 (9) ◽  
pp. 1164
Author(s):  
Katsuhiko Muroyama ◽  
Jun'ichi Hayashi ◽  
Atsushi Sato ◽  
Susumu Takemoto

RSC Advances ◽  
2017 ◽  
Vol 7 (72) ◽  
pp. 45668-45675 ◽  
Author(s):  
Vediyappan Veeramani ◽  
Mani Sivakumar ◽  
Shen-Ming Chen ◽  
Rajesh Madhu ◽  
Hatem R. Alamri ◽  
...  

We synthesize graphene sheet-like porous activated carbon (GPAC) with a high specific surface area by using Bougainvillea spectabilis as a precursor with the assistance of a facile and reliable chemical activation method.


Author(s):  
A. A. Popova

The possibility of developing activated carbon materials with a high specific surface area is shown. Their classification, the main stages of research and the results obtained are considered. A schematic diagram of the production of a material with a BET specific surface in the range of 2400...2700 m2/g is presented. The main stages of the production of activated carbon material have been determined, including the preliminary carbonization of the carbon raw material, its alkaline activation, and the post-processing of the obtained material (from the pre-preparation of the components and the preparation of the reaction mixture to the subsequent isolation and drying of the finished product). The composition of the equipment and the possibility of a large-scale transition from laboratory to pilot industrial production have been determined.


2021 ◽  
Vol 319 ◽  
pp. 111063
Author(s):  
Yury M. Volfkovich ◽  
Valentin E. Sosenkin ◽  
Alexei Y. Rychagov ◽  
Alexandr V. Melezhik ◽  
Alexei G. Tkachev ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 926
Author(s):  
Shamim Ahmed Hira ◽  
Mohammad Yusuf ◽  
Dicky Annas ◽  
Hu Shi Hui ◽  
Kang Hyun Park

Activated carbon (AC) was fabricated from carrot waste using ZnCl2 as the activating agent and calcined at 700 °C for 2 h in a tube furnace. The as-synthesized AC was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analysis; the results revealed that it exhibited a high specific surface area and high porosity. Moreover, this material displayed superior catalytic activity for the degradation of toxic Rhodamine B (RhB) dye. Rate constant for the degradation of RhB was ascertained at different experimental conditions. Lastly, we used the Arrhenius equation and determined that the activation energy for the decomposition of RhB using AC was approximately 35.9 kJ mol−1, which was very low. Hopefully it will create a great platform for the degradation of other toxic dye in near future.


Sign in / Sign up

Export Citation Format

Share Document