scholarly journals Involvement of the red light receptors phytochrome A and phytochrome B in the regulation of gene expression of the plastid transcription apparatus by cytokinin during de-etiolation of A. thaliana

1998 ◽  
Vol 8 (3) ◽  
pp. 317-329 ◽  
Author(s):  
Jorge J. Casal ◽  
Rodolfo A. Sánchez

AbstractThe control of seed germination by red and far-red light is one of the earliest documented phytochrome-mediated processes Phytochrome is now known to be a small family of photoreceptors whose apoproteins are encoded by different genes Phytochrome B (phyB) is present in dry seeds and affects germination of dark imbibed seeds but other phytochromes could also be involved Phytochrome A (phyA) appears after several hours of imbibition and mediates very-low-fluence responses PhyB and other phytochromes different from phyA mediate the classical low-fluence responses The phytochrome involved in high-irradiance responses of seed germination (inhibition of germination under continuous far-red) has not been unequivocally established, although phyA is the most likely candidate Phytochrome can affect embryo growth capacity and/or the constraint imposed by the tissues surrounding the embryo At least in some species, gibberellins participate in the signalling process In the field, phyA has been implicated in the perception of light during soil cultivations, and phyB would be involved in the perception of red/far-red ratios associated with the presence of gaps in the canopy This review describes recent advances in phytochrome research, particularly those derived from the analysis of germination in specific mutants, and their connection with traditional observations on phytochrome control of seed germination


1997 ◽  
Vol 20 (6) ◽  
pp. 759-763 ◽  
Author(s):  
C. STEINDLER ◽  
M. CARABELLI ◽  
U. BORELLO ◽  
G. MORELLI ◽  
I. RUBERTI

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Philipp Schwenk ◽  
David J Sheerin ◽  
Jathish Ponnu ◽  
Anne-Marie Staudt ◽  
Klara L Lesch ◽  
...  

Phytochromes are photoreceptors regulating growth and development in plants. Using the model plant Arabidopsis, we identified a novel signalling pathway downstream of the far-red light-sensing phytochrome, phyA, that depends on the highly conserved CCR4-NOT complex. CCR4-NOT is integral to RNA metabolism in yeast and animals, but its function in plants is largely unknown. NOT9B, an Arabidopsis homologue of human CNOT9, is a component of the CCR4-NOT complex, and acts as negative regulator of phyA-specific light signalling when bound to NOT1, the scaffold protein of the complex. Light-activated phyA interacts with and displaces NOT9B from NOT1, suggesting a potential mechanism for light signalling through CCR4-NOT. ARGONAUTE 1 and proteins involved in splicing associate with NOT9B and we show that NOT9B is required for specific phyA-dependent alternative splicing events. Furthermore, association with nuclear localised ARGONAUTE 1 raises the possibility that NOT9B and CCR4-NOT are involved in phyA-modulated gene expression.


2020 ◽  
Vol 21 (6) ◽  
pp. 1993 ◽  
Author(s):  
Yukio Kurihara ◽  
Yuko Makita ◽  
Haruka Shimohira ◽  
Minami Matsui

The etiolation process, which occurs after germination, is terminated once light is perceived and then de-etiolation commences. During the de-etiolation period, monochromatic lights (blue, red and far-red) induce differences in gene expression profiles and plant behavior through their respective photoreceptors. ELONGATED HYPOCOTYL 5 (HY5), a bZIP-type transcription factor (TF), regulates gene expression in the de-etiolation process, and other bZIP TFs are also involved in this regulation. However, transcriptomic changes that occur in etiolated seedlings upon monochromatic light irradiation and the relationship with the bZIP TFs still remain to be elucidated. Here, we track changes in the transcriptome after exposure to white, blue, red and far-red light following darkness and reveal both shared and non-shared trends of transcriptomic change between the four kinds of light. Interestingly, after exposure to light, HY5 expression synchronized with those of the related bZIP TF genes, GBF2 and GBF3, rather than HY5 HOMOLOG (HYH). To speculate on the redundancy of target genes between the bZIP TFs, we inspected the genome-wide physical binding sites of homodimers of seven bZIP TFs, HY5, HYH, GBF1, GBF2, GBF3, GBF4 and EEL, using an in vitro binding assay. The results reveal large overlaps of target gene candidates, indicating a complicated regulatory literature among TFs. This work provides novel insight into understanding the regulation of gene expression of the plant response to monochromatic light irradiation.


2002 ◽  
Vol 12 (4) ◽  
pp. 253-259 ◽  
Author(s):  
Ivana Batak ◽  
Marijana Dević ◽  
Zlatko Gibal ◽  
Dragoljub Grubišić ◽  
Kenneth L. Poff ◽  
...  

AbstractNitrogenous compounds, such as potassium nitrate, potentiate germination of different species of light-requiring seeds. Using light-induced Arabidopsis thaliana seed germination as a model system, our data suggested that only phytochrome A (phyA)-specific induced germination was affected after the exogenous application of nitrates, different nitric oxide (NO)-donors (such as organic nitrates) or sodium nitroprusside. The stimulative effect was very pronounced. Treated seed samples reached maximal germination after very short periods of red-light irradiation. To a far lesser extent, these substances affected phytochrome B (phyB)-specific induced germination. In phyB-specific induced germination, potassium nitrate was most effective, but germination percentages never exceeded 50%. The least effective was sodium nitroprusside, which practically did not affect phyB-specific induced germination. These results were confirmed using corresponding phytochrome mutants.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document