scholarly journals Leucinosis, or maple syrup urine disease (lecture and a clinical case)

2020 ◽  
Vol 48 (4) ◽  
pp. 254-262
Author(s):  
Ju. A. Tsareva ◽  
N. I. Zryachkin ◽  
M. A. Kuznetsova ◽  
E. V. Bogacheva

Maple syrup urine disease (leucinosis, short-chain ketoaciduria, branched-chain disease, branched-chain ketonuria) is an autosomal recessive disorder which is a consequence of the deficient branched-chain alpha ketoacid dehydrogenase complex. There are five subtypes of the disease: classical, intermediate, intermittent, thiamine-dependent and E3-deficient. Leucinosis is characterized by high plasma levels of branched-chain amino acids (leucine, isoleucine and valine) and high urine levels of branched-chain ketoacids, as well as of lactate and pyruvate. Tandem mass spectrometry can be used as a screening method in newborns. Mild disease cannot be identified at screening. The diagnosis should be based on tandem mass spectrometry of a blood sample and aminoacid analysis by gas chromatography of a urine sample. Prenatal diagnosis requires molecular genetic tests. Treatment of maple syrup urine disease is aimed at normalization of plasma branched-chain amino acids levels and includes two main components, namely, life-long diet therapy and active treatment of acute metabolic deterioration episodes. A favorable course of the disease is possible only with early (pre-symptomatic) initiation of treatment. The development of cognitive functions depends on plasma leucine levels. We present a clinical case of delayed diagnosis of leucinosis, despite its early clinical manifestation, leading to irreversible consequences for the patient.

Author(s):  
Scott Freeto ◽  
Donald Mason ◽  
Jie Chen ◽  
Robert H Scott ◽  
Srinivas B Narayan ◽  
...  

Background: Patients with inherited disorders of amino acid metabolism including maple syrup urine disease, tyrosinaemia and phenylketonuria on dietary management require frequent monitoring of disease-relevant plasma amino acids in order to optimize therapeutic benefit. Poorly controlled maple syrup urine disease in particular may result in catastrophic metabolic decompensation. Most methods for monitoring amino acid concentrations are time-consuming and have clinically impractical turnaround times, particularly when the required time to run standards and control samples is taken into account. Methods: We have analysed plasma amino acids using standard ion-exchange chromatography with ninhydrin detection in an amino acid analyser and compared the data with that obtained for the same samples using ultra-performance liquid chromatography (UPLCTM) separation with detection by tandem mass spectrometry. Results: The two methodologies compared very well for the measurement of six important amino acids with correlation coefficients greater than 0.96 for all. The time for sample preparation was longer for the UPLC methodology as batched derivatization and evaporation is required but UPLC-tandem mass spectrometry generated sample results every 8 min while conventional ion-exchange chromatography took almost 1 h per sample. Conclusion: UPLC-tandem mass spectrometry generates data that compares well with existing 'gold standard' methodologies but significantly reduces sample turnaround time. Decreasing the turnaround time for amino acid analyses is very likely to improve clinical care for patients with amino acid disorders as dietary adjustments can be made sooner.


2020 ◽  
Vol 21 (20) ◽  
pp. 7490
Author(s):  
Jing Xu ◽  
Youseff Jakher ◽  
Rebecca C. Ahrens-Nicklas

Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by decreased activity of the branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the irreversible catabolism of branched-chain amino acids (BCAAs). Current management of this BCAA dyshomeostasis consists of dietary restriction of BCAAs and liver transplantation, which aims to partially restore functional BCKDC activity in the periphery. These treatments improve the circulating levels of BCAAs and significantly increase survival rates in MSUD patients. However, significant cognitive and psychiatric morbidities remain. Specifically, patients are at a higher lifetime risk for cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorder. Recent literature suggests that the neurological sequelae may be due to the brain-specific roles of BCAAs. This review will focus on the derangements of BCAAs observed in the brain of MSUD patients and will explore the potential mechanisms driving neurologic dysfunction. Finally, we will discuss recent evidence that implicates the relevance of BCAA metabolism in other neurological disorders. An understanding of the role of BCAAs in the central nervous system may facilitate future identification of novel therapeutic approaches in MSUD and a broad range of neurological disorders.


1995 ◽  
Vol 41 (1) ◽  
pp. 62-68 ◽  
Author(s):  
D H Chace ◽  
S L Hillman ◽  
D S Millington ◽  
S G Kahler ◽  
C R Roe ◽  
...  

Abstract We report a new method for the diagnosis of maple syrup urine disease (MSUD) from dried blood spots on newborn screening cards based on tandem mass spectrometry (MS-MS). The mean +/- SD concentration of Leu plus Ile in normal newborns was 151 +/- 47 mumol/L (n = 1096); for Val, 131 +/- 58 mumol/L (n = 791). SDs were lower when the concentrations of these amino acids were expressed relative to that of Phe. The mean ratio for Leu + Ile to Phe was 2.5 +/- 0.49; for Val to Phe, 2.18 +/- 0.51. These results compare well with values previously reported in the literature. With these criteria, samples from a collection categorized by a bacterial inhibition assay as normal or falsely positive for MSUD were normal by MS-MS [(Leu + Ile): Phe < 5.0]. Samples from confirmed MSUD patients were categorized as abnormal [(Leu+Ile): Phe > 9.0] by MS-MS.


2015 ◽  
Vol 7 (4) ◽  
pp. 153-162 ◽  
Author(s):  
Jana Kazandjieva ◽  
Dimitrina Guleva ◽  
Assia Nikolova ◽  
Sonya Márina

Abstract Leucinosis (maple syrup urine disease - MSUD) is an inherited aminoacidopathy and organic aciduria caused by severe enzyme defect in the metabolic pathway of amino acids: leucine, isoleucine, and valine. The classical variant of the disease is characterized by accumulation of both amino and α-keto acids, particulary the most toxic rapid elevation of circulating leucine and its ketoacid, α-ketoisocaproate, which cause encephalopathy and life-threatening brain swelling. However, patients with the most severe form, classical maple syrup urine disease, may appear normal at birth, but develop acute metabolic decompensation within the first weeks of life with typical symptoms: poor feeding, vomiting, poor weight gain, somnolence and burnt sugar-smelling urine, reminiscent of maple syrup. Early diagnosis and dietary intervention improve the patient’s condition, prevent severe complications, and may allow normal intellectual development. We present a 4-month old infant with leucinosis dignosed 3 months earlier, due to elevated levels of amino acids: leucine, isoleucine and valine. The patient was full-term neonate with an uncomplecated delivery, without any family history of metabolic disorder or consanguinity. The infant was referred to a dermatologist, because of maculopapular exanthema on the scalp, trunk, upper and lower extremities, and exfoliative dermatitis of the perioral, particularly anogenital regions, associated with diarrhea. Skin involvement was associated with poor general condition of the infant exhibiting severe hypotension, anemic syndrome, dyspepsia and neurological symptoms. Exanthema developed a few days after the initiation of nutritional therapy for MSUD: isoleucine-, leucine-, and valine-free powdered medical food (MSUD-2) supplemented with iron. Zink levels were within normal ranges. Rapid skin improvement occurred after adequate branched-chain amino acids supplementation was commenced under regular laboratory control (normal zinc serum level with deficiencies of leucine and valine), skin hygiene with antiseptics, emollients and low potent topical corticosteroids. Treatment of acute metabolic decompensation and dietary restriction of branched-chain amino acids are the main aspects in the management of maple syrup urine disease. Common findings in patients with MSUD include: plasma amino acid imbalance, particularly of essential amino acids, failure to thrive attributed to restriction of particular precursor amino acids and natural proteins, micronutrient deficiencies or higher energy requirement due to chronic illness or inflammation. Due to low intake of branched-chain amino acids, some patients develop skin lesions known as acrodermatitis enteropathica-like syndrome. Here we report a case of an infant who developed acrodermatitis enteropathica-like skin eruptions due to branched-chain amino acid deficiency during treatment of maple syrup urine disease. According to available world literature, this is the first report of acrodermatitis enteropathica-like syndrome in an infant with maple syrup urine disease (leucinosis) in the Republic of Bulgaria.


2000 ◽  
Vol 11 (5) ◽  
pp. 1919-1932 ◽  
Author(s):  
Philippe Jouvet ◽  
Pierre Rustin ◽  
Deanna L. Taylor ◽  
Jennifer M. Pocock ◽  
Ursula Felderhoff-Mueser ◽  
...  

Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a deficiency in branched chain α-keto acid dehydrogenase that can result in neurodegenerative sequelae in human infants. In the present study, increased concentrations of MSUD metabolites, in particular α-keto isocaproic acid, specifically induced apoptosis in glial and neuronal cells in culture. Apoptosis was associated with a reduction in cell respiration but without impairment of respiratory chain function, without early changes in mitochondrial membrane potential and without cytochrome c release into the cytosol. Significantly, α-keto isocaproic acid also triggered neuronal apoptosis in vivo after intracerebral injection into the developing rat brain. These findings suggest that MSUD neurodegeneration may result, at least in part, from an accumulation of branched chain amino acids and their α-keto acid derivatives that trigger apoptosis through a cytochrome c-independent pathway.


Sign in / Sign up

Export Citation Format

Share Document