scholarly journals A REVIEW OF NANOTECHNOLOGY APPLICATIONS IN THE OIL AND GAS INDUSTRIES

Author(s):  
B.M. Das ◽  
D. Dutta

Nanotechnology encompasses the science and technology of objects with sizes ranging from 1 nm to 100 nm. Today, exploration and production from conventional oil and gas wells have reached a stage of depletion. Newer technologies have been developed to address this problem. Maximum oil production at a minimum cost is currently a huge challenge. This paper reviews nanotechnology applications in the oil and gas production sector, including in the fields of exploration, drilling, production, and waste management in oil fields, as well as their environmental concerns. The paper reviews experimental observations carried out by various researchers in these fields. The effect of various nanoparticles, such as titanium oxide, magnesium oxide, zinc oxide, copper oxide, and carbon nanotubes in drilling fluids and silica nanoparticles in enhanced oil recovery, has been observed and studied. This paper gives a detailed review of the benefits of nanotechnology in oil exploration and production. The fusion of nanotechnology and petroleum technology can result in great benefits. The physics and chemistry of nanoparticles and nanostructures are very new to petroleum technology. Due to the greater risk associated with adapting new technology, nanotechnology has been slow to gain widespread acceptance in the oil and gas industries. However, the current economic conditions have become a driving force for newer technologies.

2021 ◽  
Author(s):  
L. Hendraningrat

In low oil price environments, conducting affordable enhanced oil recovery (EOR) projects can be very challenging. One item of interest for successful future EOR should be in how produced fluids are treated and how to achieve cost-efficiency. Nanoflooding, is an emerging EOR technique, which has attracted deployment in recent years. Meanwhile, Indonesia continues to progress towards the national oil and gas production target of one million barrels per day by 2030. This paper presents the observation of opportunities and challenges of using nanoflooding to enable oil and gas production in Indonesia to achieve its desired targets. The study began by mapping the pain points in major oilfields in Indonesia. We observed and discussed the advantage and limitation of traditional mature EOR techniques, status, and ongoing application of EOR in Indonesia. Then, we briefly explained the main reasons why nanoflooding can be considered for future implementation in accelerating oil production in Indonesia, including a discussion about a successful pilot test. As an emerging EOR technique, nanoflooding can be considered as a cost-efficient technique. Silica-based nanofluid can be accessed in a cost-efficient manner and can be executed from an implementation standpoint considering surface facilities. The mechanism that is introduced can help to displace incremental oil more effectively since it can go inside pore throats due to the nano-size. We observed several recognized benefits and challenges to deploy nanoflooding in Indonesia. Based on this study, nanoflooding is very attractive and has potential to be implemented.


2018 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Mohammad Hidayaturrahman

Government policies in natural resource management, especially in the oil and gas sector face a lot of problems. However, the government also has a responsibility to improve the life of people affected from oil and gas exploration and production activities. This research was aimed at investigating how the implementation of policies run by the central and local government toward the oil and gas management and community empowerment, especially the community located closely  to oil and gas exploration and production activity in Madura, East Java. This research method is phenomenological research using descriptive qualitative approach. Therefore, this study is conducted through direct observation on the object during the research time. The data collection is done through observation and interview. The results of this study revealed that it is needed an integrated step done by the government, vertically, whether central, provincial, district, and village to synchronize oil and gas management and community empowerment programs. By doing so, the ideas and desires to improve the welfare and increase the state income will be realized, especially in focusing corporate and government programs improving citizen’ economic and education, whose area becomes the location of oil and gas production.


2017 ◽  
Vol 20 (K4) ◽  
pp. 48-56
Author(s):  
Chuc Dinh Nguyen ◽  
Tu Van Nguyen ◽  
Hung Quang Nguyen ◽  
Cuong Van Bui ◽  
Thanh Quoc Truong ◽  
...  

As oil and gas production has been going on over a few decades, conventional plays such as pre-Tertiary fractured basement highs and Cenozoic structural traps become more and more exhausted, and the remaining targets of the same type do not have sufficient reserves for development and production. Exploration activities in Cuu Long basin, therefore, are shifting towards more complicating types of plays which are stratigraphic traps and combination traps. Several researches were conducted in southeastern marginal slope and indicated the possibility of stratigraphic pinch-out traps with insufficient petroleum system and low hydrocarbon potential. In spite of many researches, there are still difficulties in defining the distribution and in evaluating hydrocarbon potential of these traps, so seismic stratigraphy analysis in accompanied with interpretation of seismic attribute and well logs is very necessary to support this problem. Seismic stratigraphic analysis on seismic sections, in agreement with seismic attributes’ and log analysis’ findings, show that the stratigraphic/combination traps in Oligocene C and D were formed during lowstand system tract as sigmoid-oblique clinoforms downlapping onto underlying strata in distributary mouths/delta settings. The integration of seismic attribute analysis and well log interpretation has further defined the fan-shaped distribution of these traps. Thus, using various methods, the stratigraphic traps can be better revealed. Further studies, however, need to be carried out to fully evaluate hydrocarbon potential of these stratigraphic/ combination traps, and minimize risks in exploration drilling.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5142
Author(s):  
Nabe Konate ◽  
Saeed Salehi

Shale formations are attractive prospects due to their potential in oil and gas production. Some of the largest shale formations in the mainland US, such as the Tuscaloosa Marine Shale (TMS), have reserves estimated to be around 7 billion barrels. Despite their huge potential, shale formations present major concerns for drilling operators. These prospects have unique challenges because of all their alteration and incompatibility issues with drilling and completion fluids. Most shale formations undergo numerous chemical and physical alterations, making their interaction with the drilling and completion fluid systems very complex to understand. In this study, a high-pressure, high-temperature (HPHT) drilling simulator was used to mimic real time drilling operations to investigate the performance of inhibitive drilling fluid systems in two major shale formations (Eagle Ford Shale and Tuscaloosa Marine Shale). A series of drilling experiments using the drilling simulator and clay swelling tests were conducted to evaluate the drilling performance of the KCl drilling fluid and cesium formate brine systems and their effectiveness in minimizing drilling concerns. Cylindrical cores were used to mimic vertical wellbores. It was found that the inhibitive muds systems (KCl and cesium formate) provided improved drilling performance compared to conventional fluid systems. Among the inhibitive systems, the cesium formate brine showed the best drilling performances due to its low swelling rate and improved drilling performance.


1974 ◽  
Vol 188 (1) ◽  
pp. 11-24 ◽  
Author(s):  
L. C. Allcock

Development of offshore oil and gas production from the continental shelf and in even deeper water will be dependent on engineers. It is of primary importance to understand the nature of the oil and gas production industry in order to follow more clearly the contribution that will be required from many of the professional branches of engineering, and a great deal of new technology must be developed in order that the problems of the future may be overcome. The difficulty may not be in defining the future engineering of oil and gas development but in finding engineers in sufficient numbers to meet the demand.


2013 ◽  
Vol 24 ◽  
pp. 7-15 ◽  
Author(s):  
Swaminathan Ponmani ◽  
R. Nagarajan ◽  
Jitendra Sangwai

Oil and Gas industry is going through a phase where there is an increased demand of energy sources (particularly oil and gas) and reduced production due to mature oilfields. There is a need for new technologies which can help improve production from the reservoir and develop new fields. Nanotechnology offers promising solution for the same. Nanotechnology is the study of science of materials at nanoscale which help in enhancing the performance of processes. Nanoparticles are the nanosized materials in the range of 1-100 nm. Nanoparticles have high specific surface area and unique properties, such as high adsorption potential and heat conductivity. These particles when mixed with base fluids, also called as nanofluids, and used for several application related to upstream oil and gas industry, help improve the performance of several processes. The use of nanoparticle in exploration and production is an attractive tool for petroleum engineers that have been improved by many researchers in recent years. This paper discusses about how the nanotechnology plays an important role in an upstream oil and gas industry which includes exploration, drilling, and completion, production and enhanced oil recovery operation.


Sign in / Sign up

Export Citation Format

Share Document