Effect of Biofilm Formation on the Escherichia coli Drug Resistance of Isolates from Pigs in Central China

Author(s):  
Jinpeng Li ◽  
Qingying Fan ◽  
Chenlong Mao ◽  
Manyu Jin ◽  
Li Yi ◽  
...  

Background: Multi-drug resistant Escherichia coli (E. coli) can cause a variety of diseases that lead to considerable economic losses in the swine industry. In the past, the mainstream view believed that most bacterial resistance was caused by planktonic bacteria, but the ability of bacteria to form biofilms was ignored. Here, we isolated and identified 185 strains of E. coli from pigs in central China and analyzed the relationship between their genetics, antibiotic sensitivity and biofilm formation ability.Methods: First, the isolates were classified according to biofilm formation ability by semi-quantitative staining of crystal violet. Then, Phylogenetic group analysis of isolates by polymerase chain reaction. In addition, E. coli with different biofilm-forming abilities were evaluated for antimicrobial susceptibility in its planktonic and biofilm state. Finally, the drug resistance pattern of the isolates with different biofilm formation capabilities were compared.Result: most of the collected strains showed biofilm formation ability (87.57%, 162/185). The isolated E. coli with biofilm formation ability were classified into the following groups: A (16.05%, 26/162), B1 (10.49%, 17/162), B2 (33.33%, 54/162) and D (40.12%, 65/162). Simultaneously, the isolated E. coli were classified into the following groups according to the biofilm formation ability: Strong (34.57%, 56/162), Moderate (33.33%, 54/162), Weak (32.10%, 52/162) and Absent (12.43%, 23/162). Compared with the planktonic cells, the isolates showed a significant increase in the resistance rate in the biofilm form. And the isolates of the strong biofilm-forming ability group had a high drug resistance pattern. This study provides data of the drug resistance of pig-derived E. coli with different biofilm-forming abilities and provides a scientific basis for guiding veterinary clinical treatment and disease prevention.

Author(s):  
Monika Soni ◽  
Abhishek Gaurav ◽  
Bincy Joseph ◽  
S. S. Shekhawat ◽  
Subhash Chand Meena

2019 ◽  
Vol 11 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Rashmi M. Karigoudar ◽  
Mahesh H. Karigoudar ◽  
Sanjay M. Wavare ◽  
Smita S. Mangalgi

Abstract BACKGROUND: Escherichia coli accounts for 70%–95% of urinary tract infections (UTIs). UTI is a serious health problem with respect to antibiotic resistance and biofilms formation being the prime cause for the antibiotic resistance. Biofilm can restrict the diffusion of substances and binding of antimicrobials. In this context, the present study is aimed to perform in vitro detection of biofilm formation among E. coli strains isolated from urine and to correlate their susceptibility pattern with biofilm formation. MATERIALS AND METHODS: A total of 100 E. coli strains isolated from patients suffering from UTI were included in the study. The identification of E. coli was performed by colony morphology, Gram staining, and standard biochemical tests. The detection of biofilm was carried out by Congo Red Agar (CRA) method, tube method (TM), and tissue culture plate (TCP) method. Antimicrobial sensitivity testing was performed by Kirby–Bauer disc diffusion method on Muller–Hinton agar plate. RESULTS: Of the 100 E. coli strains, 49 (49%) and 51 (51%) were from catheterized and noncatheterized patients, respectively. Biofilm production was positive by CRA, TM, and TCP method were 49 (49%), 55 (55%), and 69 (69%), respectively. Biofilm producers showed maximum resistance to co-trimoxazole (73.9%), gentamicin (94.2%), and imipenem (11.6%) when compared to nonbiofilm producers. Significant association was seen between resistance to antibiotic and biofilm formation with a P = 0.01 (<0.05). CONCLUSION: A greater understanding of biofilm detection in E. coli will help in the development of newer and more effective treatment. The detection of biofilm formation and antibiotic susceptibility pattern helps in choosing the correct antibiotic therapy.


2015 ◽  
Vol 13 (4) ◽  
pp. 1020-1028 ◽  
Author(s):  
Stefanie Heß ◽  
Claudia Gallert

Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.


Author(s):  
Hossein Norouzian ◽  
Mohammad Katouli ◽  
Nader Shahrokhi ◽  
Sharam Sabeti ◽  
Mohammad Pooya ◽  
...  

Background and Objectives: B2 and D have been mentioned as the most common phylogenetic groups among uropatho- genic Escherichia coli. However, there is still controversy about the importance of these phylo-groups. This study was con- ducted to investigate the probable relation between these groups and antibiotic resistance patterns of E. coli isolates derived from urine and feces of the patients with acute or recurrent UTI. Materials and Methods: 10 isolates were recovered from urine and feces samples of patients with different phases of UTI in whom E. coli was causative pathogen. Biochemical fingerprinting was performed to classify the isolates and select their appropriate representatives. Phylogenetic grouping was performed using multiplex PCR, and antibiotic resistance was deter- mined by disk diffusion method. Results: Five-hundred-sixty E. coli isolates were derived from 56 UTI patients (27 acute, 29 recurrent). Among them, 261 isolates were selected using biochemical fingerprinting. All the isolates were sensitive to imipenem and nitrofurantoin. Com- pared to other phylo-groups, the isolates in group D showed considerably different frequencies in acute vs. recurrent phase of UTI, in urine vs. stool samples, in males vs. females, and in- vs. out-patients. They were more resistant to the antibiotics (except norfloxacin), and in contrast to others, this was seen more in acute UTI, especially in urine samples. Multi-drug resistance pattern was also meaningfully higher in group D. Conclusion: Although phylo-groups B2 and D of E. coli bacteria are more responsible for UTI, group D isolates seem to be more resistant and probably more virulent, even than the ones from group B2.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5711 ◽  
Author(s):  
Lumin Yu ◽  
Fei Shang ◽  
Xiaolin Chen ◽  
Jingtian Ni ◽  
Li Yu ◽  
...  

Background Escherichia coli is an important opportunistic pathogen that could cause inflammation of the udder in dairy cows resulting in reduced milk production and changes in milk composition and quality, and even death of dairy cows. Therefore, mastitis is the main health issue which leads to major economic losses on dairy farms. Antibiotics are routinely used for the treatment of bovine mastitis. The ability to form biofilm increases the antibiotic resistance of E. coli. Nanoparticles (NPs), a nanosized, safe, and highly cost-effective antibacterial agent, are potential biomedical tools. Given their antibacterial activities, silver nanoparticles (Ag NPs) have a broad range of applications. Methods In this study, we performed antibacterial activity assays, biofilm formation assays, scanning electron microscopy (SEM) experiments, and real-time reverse transcription PCR (RT-PCR) experiments to investigate the antibacterial and anti-biofilm effect of quercetin, Ag NPs, and Silver-nanoparticle-decorated quercetin nanoparticles (QA NPs) in E. coli strain ECDCM1. Results In this study, QA NPs, a composite material combining Ag NPs and the plant-derived drug component quercetin, exhibited stronger antibacterial and anti-biofilm properties in a multi-drug resistant E. coli strain isolated from a dairy cow with mastitis, compared to Ag NPs and Qe. Discussion This study provides evidence that QA NPs possess high antibacterial and anti-biofilm activities. They proved to be more effective than Ag NPs and Qe against the biofilm formation of a multi-drug resistant E. coli isolated from cows with mastitis. This suggests that QA NPs might be used as a potential antimicrobial agent in the treatment of bovine mastitis caused by E. coli.


Sign in / Sign up

Export Citation Format

Share Document