scholarly journals An Approach to Mapping Groundwater Recharge Potential Zones using Geospatial Techniques in Kayadhu River Basin, Maharashtra

Author(s):  
Bhagwan B. Ghute ◽  
Shaikh Md. Babar

Rapid increase in population, agricultural expansion and ongoing development projects in the region. However, the region is facing water scarcity because of seasonal precipitation and inadequate surface water resources. Therefore, groundwater resources are gaining much more attention mainly in Kayadhu river basin to fulfil drinkable water requirements in the area. To maintain the long-term sustainability of water resources artificial recharge is expected to become frequently necessary in future as the growing population requires more water and consequently, more storage is required to conserve water for use in the times of shortage. Geospatial techniques are used in the field of hydrology and water resources management. One of the chief advantages of this techniques for hydrological investigation and observe its ability to generate data in spatial and temporal fields, which plays vital role for fruitful analysis, estimation and authentication. The suitable zones for artificial recharge were identified by overlaying thematic layers such as land use/land cover, lineament density, slope, drainage density, lithology, geomorphology, rainfall and soil characteristics are integrated with recharge potential factors. The result reveals that 79% area of Kayadhu river basin is most effective for high to moderate artificial recharge potential zone.

2018 ◽  
Vol 2 (1) ◽  
pp. 28-42 ◽  
Author(s):  
Shanti Mahto ◽  
Anuj Kushwaha ◽  
Siva Subramanian M. ◽  
Nikita Nikita ◽  
T. B. N. Singh

Artificial recharge plays a prominent role in the sustainable management of groundwater resources. The study has proposed a methodology to viable artificial recharge structure using geographical information system (GIS) and empirical equation techniques for augmenting groundwater resources in the Ranchi urban and rural area of Ranchi District, Jharkhand. The thematic layers for geomorphology, drainage density, order of streams, runoff and trend has been prepared in the GIS environment using convection and remote sensing data. It has been found that the slope and topographic gradient of Ranchi region is one of the major governing factors, which restricts to hold surface water stagnant. Jumar watershed is found as the most feasible watershed for the construction of check dams/percolation tanks followed by Lower Subarnarekha watershed. Out of 15 deeper exploratory wells, 14 are declining. Harmu watershed is found to be in the worst condition in terms of availability of runoff water. Harmu, Kanke, Bariyatu, Namkum, Doranda, Hinoo and Hatia have found as the most suitable locations for installation of RTRWH within the Ranchi urban area. Based on the available field information, check dams are suggested as the most promising artificial recharge structures for Ranchi rural environment.


2010 ◽  
Vol 24 (9) ◽  
pp. 1123-1132 ◽  
Author(s):  
Lei Wang ◽  
Zhongjing Wang ◽  
Toshio Koike ◽  
Hang Yin ◽  
Dawen Yang ◽  
...  

2011 ◽  
Vol 25 (13) ◽  
pp. 2141-2151 ◽  
Author(s):  
Guanghong Wu ◽  
Shuirong Chen ◽  
Ruixian Su ◽  
Meiqing Jia ◽  
Wanqing Li

2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Shobha Shrestha

The larger population in the middle mountain region of Nepal is dependenton spring for domestic water use. Availability and flow regularity ofsprings rely on groundwater recharge (GWR) potential which is attributedto various natural and human factors. The present study is an attempt toexplore the GWR potential using GIS and Remote sensing (RS) methodin two watersheds of the far western middle mountains of Nepal. Spatialanalysis is carried out using a weighted overlay analysis of six factorsnamely, slope, lithology, lineament, drainage density, rainfall, and landcover/ land use. The result shows that only 16 percent of the total watershed area is under a very high recharge potential zone while 31 percent area falls under very low recharge potential. It is found that the distribution of existing spring sources is random concerning GWR potential. Water stress in Rel Gad watershed is evident which accentuates the propermanagement of recharge areas. The study concludes that the GIS RS toolis useful in identifying recharge potential zones. It aids to better planningfor increasing recharge potential. Proper management of recharge potentialarea and spring water sources direct the future water availability to fulfillthe increasing water need of the communities.


2017 ◽  
Vol 33 (1) ◽  
pp. 131-140
Author(s):  
Zygmunt Miatkowski ◽  
Karolina Smarzyńska

AbstractThe goal of the paper was to determine surface water resources of an agricultural watershed representative for the areas of intensive crop production in the Kujawy region. This area is characterised by the lowest average annual precipitation in Poland and high water demands related to the intensive crop production.Hydrological studies were carried out in 2007–2011 in the upper Zgłowiączka River watershed located in the eastern part of the analysed region. Over 90% of the study area is used as an arable land.Water velocity in the river bed and water level were measured at the outlet of the watershed in the river cross-section Samszyce.The upper Zgłowiączka River has a snow-rainfall hydrological regime, strongly modified by anthropogenic activities related to the intensive crop production and installation of subsurface drainage system. The study period was characterised by very large temporal variability of hydrological conditions. The mean annual outflow coefficient amounted to 18% and varied highly in time: from 3% in the average years to 62% in the abnormally wet 2011. Average discharge (SSQ) in the Samszyce river cross-section was equal to 0.25 m3·s−1, and the mean unit outflow – to 3.2 dm3·s−1·km−2. The results of the study show that disposable surface water resources of the Kujawy region are very small, especially in the summer half-year. Thus, their utilization as a potential source of water for crop irrigation can be taken into account only, if water excesses will be retained within the watershed and used in conjunction with groundwater resources.


2019 ◽  
Vol 2 (2) ◽  
pp. 124-133
Author(s):  
Krushnath Shirke ◽  
Kunal Bandivdekar

The study was conducted to find out the groundwater potential zones (GWPZ) by using geospatial techniques in Phonda basin in Sindhudurg district of Maharashtra (India). Analytical Hierarchical Process (AHP) was used to demarcate the GWPZ using thematic layers: geology, geomorphology, lineament density, drainage density, elevation, slope, soil, rainfall and land use land cove (LULC). The ranks were assigned for each individual parameter of thematic layer and weights assigned to each thematic layer and final groundwater map was prepared by intersection all thematic layers in Arc GIS environment. GWPZs were categorized as: low, moderate, high and very high. Geological factors are influencing groundwater potentials according to geological formations and human activities. Geological influence approach of delineating the GWPZ is useful for planning and monitoring the groundwater resource for sustainable development.


Sign in / Sign up

Export Citation Format

Share Document