Engineering Chickpea Variety HC-1 with OsRuvB Gene for Salt Stress Tolerance

Author(s):  
Preeti . ◽  
Pushpa Kharb

Background: Salinity is a major problem worldwide and is increasing day by day. Salt stress causes severe yield losses in crop plants and the damages in chickpea are up to 100%. To overcome these losses, the present study was undertaken to develop transgenic chickpea plants (var. HC-1) carrying OsRuvB gene for salt stress tolerance. Methods: Transgenic chickpea plants harboring OsRuvB gene were developed using Agrobacterium-mediated transformation. T0 putative transgenic chickpea plants were screened for the presence of OsRuvB gene through PCR using gene specific primers. The stable integration and copy number of transgene in transgenic chickpea plants were confirmed through Southern hybridization and qRT-PCR. T1 generation transgenic chickpea plants were screened for the presence of OsRuvB gene using direct PCR (Phire Direct PCR kit). Result: PCR-based screening of putative transformants using gene-specific primers showed a transformation frequency of 17%. Southern blot and real-time PCR analysis revealed stable and single-copy insertion. In T1 generation a total of 74 plants (out of 170) showed the presence of OsRuvB gene. The engineered lines developed in the present investigation can be further undertaken to develop transgenic chickpea plants for salt stress tolerance.

2019 ◽  
Vol 20 (8) ◽  
pp. 1990 ◽  
Author(s):  
Meichao Ji ◽  
Kun Wang ◽  
Lin Wang ◽  
Sixue Chen ◽  
Haiying Li ◽  
...  

Polyamines play an important role in plant growth and development, and response to abiotic stresses. Previously, differentially expressed proteins in sugar beet M14 (BvM14) under salt stress were identified by iTRAQ-based quantitative proteomics. One of the proteins was an S-adenosylmethionine decarboxylase (SAMDC), a key rate-limiting enzyme involved in the biosynthesis of polyamines. In this study, the BvM14-SAMDC gene was cloned from the sugar beet M14. The full-length BvM14-SAMDC was 1960 bp, and its ORF contained 1119 bp encoding the SAMDC of 372 amino acids. In addition, we expressed the coding sequence of BvM14-SAMDC in Escherichia coli and purified the ~40 kD BvM14-SAMDC with high enzymatic activity. Quantitative real-time PCR analysis revealed that the BvM14-SAMDC was up-regulated in the BvM14 roots and leaves under salt stress. To investigate the functions of the BvM14-SAMDC, it was constitutively expressed in Arabidopsis thaliana. The transgenic plants exhibited greater salt stress tolerance, as evidenced by longer root length and higher fresh weight and chlorophyll content than wild type (WT) under salt treatment. The levels of spermidine (Spd) and spermin (Spm) concentrations were increased in the transgenic plants as compared with the WT. Furthermore, the overexpression plants showed higher activities of antioxidant enzymes and decreased cell membrane damage. Compared with WT, they also had low expression levels of RbohD and RbohF, which are involved in reactive oxygen species (ROS) production. Together, these results suggest that the BvM14-SAMDC mediated biosynthesis of Spm and Spd contributes to plant salt stress tolerance through enhancing antioxidant enzymes and decreasing ROS generation.


2018 ◽  
Vol 143 (5) ◽  
pp. 391-396 ◽  
Author(s):  
Tingting Zhao ◽  
Jingkang Hu ◽  
Yingmei Gao ◽  
Ziyu Wang ◽  
Yufang Bao ◽  
...  

Zinc finger-homeodomains (ZF-HDs) are considered transcription factors that are involved in a variety of life activities in plants, but their function in regulating plant salt stress tolerance is unclear. The SL-ZH13 gene is significantly upregulated under salt stress treatment in tomato (Solanum lycopersicum) leaves, per our previous study. In this study, to further understand the role that the SL-ZH13 gene played in the response process of tomato plants under salt stress, the virus-induced gene silencing (VIGS) method was applied to down-regulate SL-ZH13 expression in tomato plants, and these plants were treated with salt stress to analyze the changes in salt tolerance. The silencing efficiency of SL-ZH13 was confirmed by quantitative real-time PCR analysis. SL-ZH13-silenced plants wilted faster and sooner than control plants under the same salt stress treatment condition, and the main stem bending angle of SL-ZH13-silenced plants was smaller than that of control plants. Physiological analysis showed that the activities of superoxide dismutase, peroxidase, and proline content in SL-ZH13-silenced plants were lower than those in control plants at 1.5 and 3 hours after salt stress treatment. The malondialdehyde content of SL-ZH13-silenced plants was higher than that in control plants at 1.5 and 3 hours after salt stress treatment; H2O2 and O2- accumulated much more in leaves of SL-ZH13-silenced plants than in leaves of control plants. These results suggested that silencing of the SL-ZH13 gene affected the response of tomato plants to salt stress and decreased the salt stress tolerance of tomato plants.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 782
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Myung Geun Ji ◽  
Gyeong-Im Shin ◽  
Song Yi Jeong ◽  
...  

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document