scholarly journals One-step Inverse Forming Simulation on Hot Forming Process of High-strength Food-can Tinplate

2016 ◽  
Vol 10 (1) ◽  
pp. 26-30
Author(s):  
Li Xiaoda ◽  
Zhang Xiangkui ◽  
Hu Ping ◽  
Liu Weijie ◽  
Zhan Xianghui
2016 ◽  
Vol 693 ◽  
pp. 800-806
Author(s):  
You Dan Guo

In high-strength steel hot forming, under the heating and quenching interaction, the material is oxidized and de-carbonized in the surface layer, forming a gradual change microstructure composed of ferrite, ferrite and martensite mixture and full martensite layers from surface to interior. The experiment enunciation: Form the table to ferrite, ferrite and martensite hybrid organization, completely martensite gradual change microstructure,and make the strength and rigidity of material one by one in order lower from inside to surface, ductility one by one in order increment in 22MnB5 for hot forming;Changes depends on the hot forming process temperature and the control of reheating furnace gas content protection, when oxygen levels of 5% protective gas, can better prevent oxidation and decarburization;Boron segregation in the grain boundary, solid solution strengthening, is a major cause of strength increase in ;The gradual change microstructure in outer big elongation properties, make the structure of the peak force is relatively flat, to reduce the peak impact force of structure, keep the structure of high energy absorption capacity;With lower temperature, the material yield strength rise rapidly,when the temperature is 650 °C, the yield strength at 950 °C was more than 3 times as much.


Author(s):  
Ning Ma ◽  
Ping Hu

Hot forming of ultra high strength steel is an advanced forming technique which can not only represent the best solution to increasing the strength-to-mass ratio of sheet components, but also meet the need of higher passive safety and weight reduction. Based on independently developed mass production line of hot forming, its key forming and quenching technique and relative equipments are proposed and described, including multi-step and one-step method, die manufacturing with cooling system, continuous heating furnace and integrated manufacturing system composed of the advanced interdisciplinary technology of machining, electronic control, material and chemical engineering. Then the automobile body components are produced by the developed equipments of hot forming and moreover their mechanical properties are investigated. The typical tensile curve of the quenched components shows that the yield stress of the hot forming component is over 1000MPa, and the strength limitation is over 1600MPa. The three-point bending testing of the part is implemented. These experimental results indicate the validity of the developed technique and equipments.


2019 ◽  
Vol 116 (6) ◽  
pp. 613
Author(s):  
Cai-yi Liu ◽  
Yan Peng ◽  
Ling Kong ◽  
Lu-han Hao ◽  
Ren Zhai

High strength steel hot forming technology plays an important role in achieving lightweight vehicles, improving the safety of vehicles. The tensile strength of the blank formed by traditional hot forming process is as high as 1500–2000 MPa, the strength of the formed blank is high, but the elongation is usually low and comprehensive mechanical property is not high. In this article, the process control of material gradient properties hot forming technology is summarized through the analysis of strengthening mechanism of gradient distribution hot forming technology. Based on the traditional hot forming technology, a new hot forming technology based on partition cooling to achieve material property gradient distribution is proposed. By changing the cooling rate of blank in different zones is different, and the gradient distribution of material properties is finally obtained. The DEFORM is used to analyze the hot forming process of the blank under the nonuniform temperature field of the partition cooling. A set of partition cooling hot forming die was designed independently to verify the experimental results. The evolution mechanism of microstructure and its effect on material properties during hot forming under nonuniform temperature field with partition cooling were revealed.


2010 ◽  
Vol 20 (6) ◽  
pp. 894-902 ◽  
Author(s):  
Hongsheng Liu ◽  
Jun Bao ◽  
Zhongwen Xing ◽  
Dejin Zhang ◽  
Baoyu Song ◽  
...  

2012 ◽  
Vol 452-453 ◽  
pp. 81-85 ◽  
Author(s):  
Ming He Chen ◽  
Y.Y. Cao ◽  
W. Chen ◽  
Guo Liang Chen

In order to improve formability of high strength Al-alloy sheet metal, in this paper, it come up with the synchronized cooling hot forming process. Taking the aluminum alloy of 6016 H18 aluminum alloy, which carried out its technology test by Gleeble3500 hot-mechanical simulator. The process parameters such as deformation temperature T, holding time t and cooling rate v is investigated by the orthogonal test and the microstructure is analyzed simultaneously. The results show that the synchronized cooling hot forming process can be applied to 6016 H18 aluminum alloy, it both improves the formability of 6016 H18 aluminum alloy significantly and obtains the high strength after forming, it can meet the purpose of implementing deformation and enhanced in one process step, the proper combination of process parameters are T=450 °C, t=210 s, v=60 °C/s. Strengthening mechanism is which there is a large number of strengthening phase precipitated from matrix in technology process, the strengthening phases are coarser and the dispersed uniformity is a bit worse compared with that of T4 state.


2010 ◽  
Vol 129-131 ◽  
pp. 390-394
Author(s):  
Cheng Xi Lei ◽  
Zhong Wen Xing ◽  
Hong Ya Fu

The numerical simulation of hot-stamping process was carried out for UHSS square-cup parts, and the influence of dies temperature on the hot-stamping process was anlysised. Besides, through the microstructure analysis and mechanical properties testing of the formed parts, effects of dies temperature on microstructures and mechanical properties of hot-stamping square-cup parts were obtained. The experiment and simulation results showed that the mechanical properties of the UHSS are strongly dependent on the temperature, so the dies temperature is one of the most important parameters that have to be taken into account in designing the hot-forming dies and the hot-forming process.


2014 ◽  
Vol 608-609 ◽  
pp. 71-76
Author(s):  
Bi Wang

In recent years, the high-strength steel has been widely used in the automotive industry. As the high-strength steel sheet is prone to producing forming defects and serious springback problem in the stamping forming process, the finite element technique is used to simulate the value of stamping forming and springback process, so as to improve the stamping parameters and mold design according to the simulation results to achieve effective control of the springback value and efficiently improve the manufacturing precision of covering parts.


2011 ◽  
Vol 295-297 ◽  
pp. 1474-1478 ◽  
Author(s):  
You Dan Guo

High-strength sheet including 2MnB5 Boron and magnesium alloy sheet is the material commonly used in modern machinery, which is easy to induce problems such as excessive rebound, cracking, forming force increase, easy mould wear and the like. The heat analysis of 2MnB5 Boron and magnesium alloy sheet hot stamping forming process and experiments indicate that the transition process from Austenite to Martensite by controlling the sheet heating and cooling temperature is the foundation of heat forming. Only when the cooling rate reaches or surpasses the critical cooling rate, Austenite can be transformed to Martensite directly. Critical cooling rate of sheet is related to the elements of critical water flow rate, mould cooling system design, cooling medium, dented mould medium and the like. Under the condition that the elements of mould structure, cooling system, cooling medium and the like are defined, critical cooling rate is a constant value. As a result, through controlling critical water flow rate, hot forming transition process and hot forming requirements can be guaranteed to overcome the excessive rebound, cracking, forming force increase, easy mould wear and the like in hot forming process.


2010 ◽  
Vol 160-162 ◽  
pp. 836-841
Author(s):  
Yun Kai Gao ◽  
Da Wei Gao ◽  
You Zhi Deng ◽  
Wei Cao

Ultra high strength steel plays an important role of light weighting in automotive industry. The hot forming simulation of car door bar is processed with 22MnB5 ultra high strength boron steel. FEM is built with the 12 nodes shell elements and MAT 106 is selected in LS-DYNA. The hot forming processes include two heat transfers. One is the process from the oven to the tools after the blank is heated. The other is the process after the blank contacts the tools. The hot forming simulation results are obtained by LS-DYNA. The results show that the thickness distribution, the forming limit and the maximum effective plastic strain and other performances attain to standards. It is proved that the hot forming simulation method is correct.


2010 ◽  
Vol 154-155 ◽  
pp. 1450-1455
Author(s):  
Hai Yan Yu ◽  
Li Bao ◽  
You Zhi Deng ◽  
Wei Cao

Friction coefficient is an important parameter in sheet metal forming especially in hot forming. Friction condition not only influences material flow but also affects the thermal conductivity between blank and tools. In this study, varied friction coefficient is introduced to the hot forming simulation of B-pillar made of ultra high strength steel sheet 22MnB5. Three curves of friction coefficient vs. temperature are investigated. All of the heat transferred by conductivity, radiation and convection are considered in the simulation. And the temperature-dependent material and process parameters are supplied. It is demonstrated that the coupling effect among the strength and hardness of the metals, the properties of the oxide film covering blank surface and viscosity of the lubrication oil leads to the fact that the friction coefficient changes with temperature instead of constant during hot forming. The friction coefficient curve characterized by increasing first then decreasing gives the best simulation results and then is followed by the one which is characterized by decreasing first then increasing. The constant friction coefficient is the last.


Sign in / Sign up

Export Citation Format

Share Document