scholarly journals The Market For The "Not-So-Rare" Rare Earth Elements

2012 ◽  
Vol 1 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Joseph A. Giacalone

This paper examines the market for the Rare earth elements. These are comprised of 17 elements of the periodic table which include 15 elements from the group known as lanthanides and two additional elements known as scandium and yttrium. The metals are often found combined together in ores and must be separated into its individual elements. The fact is that rare earth metals are not rare in terms of the quantity present in the earths crust. However, the metals are less concentrated than other more common metals and the extraction and separation processes necessitate high research and development costs and large capital outlays.The various applications of rare earth elements can be broadly classified into four major categories, namely: High Technology Consumer Products, Environmentally Friendly Products, Industrial and Medical Devices, and National Defense Systems. The demand for such high technology products is rapidly increasing causing a simultaneous upsurge in the demand for rare earth metals as well.On the supply side, China dominates the production rare earth elements, mining approximately 97% of total world production. Consequently, most countries must rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. This near-monopoly imposes several supply-chain risks on the importing nations which are exploring ways to mitigate the potential economic harm associated with these risks.

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 131 ◽  
Author(s):  
Lisa Brückner ◽  
Tobias Elwert ◽  
Thomas Schirmer

Rare earth-bearing gypsum tailings from the fertilizer industry are a potential source for an economically viable and sustainable production of rare earth elements. Large quantities are generated inter alia in Catalão, Brazil, as a by-product in a fertilizer production plant. Hitherto, the gypsum has been used as soil conditioner in agriculture or was dumped. The cooperative project, “Catalão Monazite: Economical exploitation of rare earth elements from monazite-bearing secondary raw materials,” intends to extract rare earth elements from these gypsum tailings. In this paper, a chemical process route to obtain a mixed rare earth carbonate from a monazite concentrate, was investigated. The results of the digestion, leaching, and precipitation experiments are presented and discussed herein. This includes reagent choice, process parameter optimization through experimental design, mineralogical characterization of the feed material and residues, purification of the leach solution, and precipitation of the rare earth as carbonates. The results showed that a rare earth extraction of about 90% without the mobilization of key impurities is possible during a sulfuric acid digestion with two heating stages and subsequent leaching with water. In the following purification step, the remaining impurities were precipitated with ammonium solution and the rare earth elements were successfully recovered as carbonates with a mixture of ammonium solution and ammonium bicarbonate.


2020 ◽  
Vol 1009 ◽  
pp. 149-154
Author(s):  
Tanongsak Yingnakorn ◽  
Piamsak Laokhen ◽  
Loeslakkhana Sriklang ◽  
Tapany Patcharawit ◽  
Sakhob Khumkoa

High power neodymium magnets have been used extensively, such as components of hard disk drives, electric vehicles, and maglev trains. This type of magnet contains of high concentration of rare earth elements. After the device is out of service, the magnet will be removed and the rare earth element contained in the magnet will be extracted in order to reuse for any purposes. Recently, the study on extraction of rare earth elements (REE) from neodymium magnets is increased. However, there was only few research regarding to the extraction of rare earth metals by using a water leaching method. In this study, rare-earth elements were extracted from neodymium magnet scrap by using selective leaching technique. Initially, magnets were leached with 2 M of sulfuric acid for 24 hrs. Then, the leached solution was heated at 110°C in order to remove water and the green powder was remained. The green powder was further roasted in a muffle furnace at various temperatures from 750°C to 900°C for 2 hrs. and subsequently leached by water. Finally, the iron oxide residue was separated from rare earth element solution by filtration. Based on this experiment, it was found that the purity of the rare earth metals can be achieved up to 99.4%.


Author(s):  
T.K. Jumadilov ◽  
◽  
Kh. Khimersen ◽  
B. Totkhuskyzy ◽  
J. Haponiuk ◽  
...  

Rare earth elements play an important role in the production, energy, and high technology. Due to the rapid development of industry, the demand for rare earth metals is rising every day. Therefore, it is necessary to improve the extraction of rare earth metals from various sources to meet the demand for these elements. Currently, pyro- and hydrometallurgical technologies are used to extract rare earth metals from an ore and other secondary sources (industrial wastewater, acid drainage mines, etc.). Hydrometallurgical technologies include precipitation, extraction, adsorption, and ion exchange methods. Adsorption is one of the most effective methods for the extraction and separation of rare earth elements. Adsorption methods are highly selectivity to metal ions and have low emissions. However, not all adsorbents are effective in producing the same metal ions. This study provides an overview of the different adsorbents that can be used to extract rare earth elements from aquatic systems. Hydrogels and molecular polymers have been found to be cost-effective methods for high-grade rare earth metals. Further research is needed to ensure the performance of these systems.


2013 ◽  
Vol 39 (3) ◽  
pp. 107-114 ◽  
Author(s):  
Stefan Góralczyk ◽  
Elżbieta Uzunow

Abstract Rare earth metals including yttrium and europium are one of several critical raw materials, the use of which ensures the development of the so-called high technology. The possibility of their recovery in Europe is limited practically only to secondary materials such as phosphogypsum and electronic waste. The article presents the results of our research concerning the development of recovery technology of yttrium and europium from luminophore CRT used lamps. It describes the principle of separation of elements and the test results of cleaning the concentrate. It was shown that the costs of preparing the concentrate according to the proposed technology are lower than the phosphogypsum processing technology and the composition of the resulting product does not contain hazardous substances.


2013 ◽  
Vol 12 (3) ◽  
pp. 257
Author(s):  
Joseph A. Giacalone ◽  
Genai Greenidge

Rare earth elements (also referred to as rare earth minerals, rare earth metals, green elements, rare earths or simply REEs) are comprised of 17 elements of the periodic table. The metals are often found combined together in ores and must be separated into its individual elements. On the supply side of the market, China is currently the largest producer of rare earth elements in the world, mining at least 90% of total world production. Consequently, many countries around the world rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. With one supplier effectively monopolizing the rare earth industry, this imposes severe supply-chain risks to the producers of products that rely on rare earth minerals. After several actions that have restricted the supply, the United States, the European Union, and Japan have challenged China for violating provisions of its membership in the World Trade Organization. This paper will examine the rare earth industry, Chinas near-monopoly, global supply-chain risks, and strategies to reduce dependence on China, including the invocation of the WTOs dispute resolution process.


2018 ◽  
Vol 56 ◽  
pp. 03019
Author(s):  
Mikhail Medkov ◽  
Galina Krysenko ◽  
Dantiy Epov ◽  
Pavel Sitnik ◽  
Valentin Avramenko

The paper is devoted to investigation of the complex processing of titanium-rare metal raw materials with ammonium hydrodifluoride. It is stated that fluorination of the main components of the mineral raw materials with ammonium hydrodifluoride proceeds with formation of complex ammonium fluorometallates and simple fluorides. It is showed that in the process of aqueous leaching of the fluorinated mineral raw material niobium and tantalum completely pass into solution together with titanium, iron, and silicon fluoroammonium salts while all the rare-earth elements stay in the insoluble residue as complex fluorosodium salts together with CaF2. The method of separation of the fluoroammonium salts with obtaining marketable products and isolation of the rare-earth elements from the insoluble residue is offered.


1962 ◽  
Vol 18 (4) ◽  
pp. 1127-1153
Author(s):  
V FASSEL ◽  
R CURRY ◽  
R KNISELEY

1963 ◽  
Vol 79 (2) ◽  
pp. 263-293 ◽  
Author(s):  
E.M. Savitskii ◽  
V.F. Terekhova ◽  
O.P. Naumkin

2018 ◽  
Vol 17 (8) ◽  
pp. 2001-2009
Author(s):  
Tatjana Juzsakova ◽  
Akos Redey ◽  
Le Phuoc Cuong ◽  
Zsofia Kovacs ◽  
Tamas Frater ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document