scholarly journals Design of a Miniaturized Implantable PIFA with DGS for the Investigation of Uterus Fibroids

2021 ◽  
Vol 17 (37) ◽  
pp. 211
Author(s):  
Mousume Samad ◽  
Mostafizur Rahman ◽  
S. M. Shamim

Continuous follow-up of unusual fibroids growth in the uterus is critical for minimizing the unwanted complexities of female’s certain health conditions. This article presents an implantable circular-shaped multi-facet PIFA for early detection of uterus fibroids. The radius of the circular antenna is 7.5 mm with the dimension of π × (7.5)2 × 1.58 mm3. The antenna has maximum return loss of 37 dB at 2.43 GHz, is suitable for ISM band use. Being low profile makes it entirely implantable in uterus. To expand the radiation efficiency and enhance the bandwidth two dielectric substrates of FR-4 and Rogers RO 3210 with each thickness of 0.79 mm are utilized. Top and bottom sides of the antenna have covered with Teflon to ensure biocompatibility. Defected ground structure has been used for size reduction as well as bandwidth increase. The performance of the antenna is also investigated in free space, biocompatible layer, and uterus layer. The estimated specific absorption rate is 0.36 W/kg when implanted in uterus.

2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


2019 ◽  
Vol 11 (08) ◽  
pp. 761-764
Author(s):  
Kaijun Song ◽  
Fei Xia ◽  
Yuxuan Chen ◽  
Yu Zhu ◽  
Jiawei Li ◽  
...  

AbstractA compact wideband out-of-phase power divider (PD) with improved isolation performance is proposed. This divider is formed by connecting an additional stub for isolation to output ports of a traditional Marchand balun with a defected ground structure (DGS) been used. To verify the design, a prototype divider is fabricated and tested. The measured results validate the 53.86% band-width centered at 3.43 GHz with more than 15 dB return loss at all ports, more than 17 dB isolation, respectively.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 59 ◽  
Author(s):  
Rongqiang Li ◽  
Bo Li ◽  
Guohong Du ◽  
Xiaofeng Sun ◽  
Haoran Sun

A compact broadband implantable patch antenna is designed for the field of biotelemetry and experimentally demonstrated using the Medical Device Radiocommunications Service (MedRadio) band (401–406 MHz). The proposed antenna can obtain a broad impedance bandwidth by exciting dual-resonant frequencies, and has a compact structure using bent metal radiating strips and a short strategy. The total volume of the proposed antenna, including substrate and superstrate, is about 479 mm3 (23 × 16.4 × 1.27 mm3). The measured bandwidth is 52 MHz (382–434 MHz) at a return loss of −10 dB. The resonance, radiation and specific absorption rate (SAR) performance of the antenna are examined and characterized.


2013 ◽  
Vol 385-386 ◽  
pp. 1292-1295
Author(s):  
Xu Han ◽  
Jian Hua Xu

A planar power divider operating over the whole Ku-band is presented. The proposed device utilizes a T-microstrip junction combined with defected ground structure and an elliptical patch at the centre of the T-junction. An isolation resistor is connected across the slotted ground plane. The simulated results of the divider show equal power split, insertion loss is less than 0.3dB, return loss of all ports are better than 15dB, and isolation is better than 15dB over the whole Ku-band.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2927
Author(s):  
Luhua Zhang ◽  
Aiting Wu ◽  
Pengquan Zhang ◽  
Zhonghai Zhang

This letter proposes a multi-passband half-mode substrate integrated waveguide (HMSIW) filter based on the theory of odd and even mode analysis. The filter adopts a triangular HMSIW cavity cut along the diagonal of the rectangle. By etching two dual-mode resonators, the resonant mode of the HMSIW resonator is coupled with the odd-even mode of the dual-mode resonator to achieve multiple passbands. The defected ground structure (DGS) of the filter can reduce the resonance frequency of the HMSIW cavity without increasing the volume of the HMSIW cavity, making it easier to couple with the odd and even mode frequencies of the resonator. The input and output ports are directly coupled through a microstrip line. In this way, it adds an additional coupling path to the filter, which increases the out-of-band suppression without changing the performance in the passband, and improves the overall performance of the filter. To prove the feasibility of the above method, a multi-passband HMSIW filter was fabricated and tested. The center frequencies of the three passbands of the filter are 2.98 GHz, 4.78 GHz, and 6.62 GHz, respectively. The return loss in the passband is better than −15 dB, and the insertion loss is better than 2 dB. The measured results have a good agreement with the simulation results.


A planer spoon shaped antenna with defected ground structure (DGS) is designed and fabricated for wireless application. The proposed antenna design exhibits 1.6GHz bandwidth, 2.20dBi Avg. Gain and maximum return loss of -24.5dB, which offers better results in wideband application. The Proposed antenna structure is simulated by software CST MWS (CST Microwave Studio) version 2018 and later comparison results are also presented


Sign in / Sign up

Export Citation Format

Share Document