scholarly journals A Compact Broadband Antenna with Dual-Resonance for Implantable Devices

Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 59 ◽  
Author(s):  
Rongqiang Li ◽  
Bo Li ◽  
Guohong Du ◽  
Xiaofeng Sun ◽  
Haoran Sun

A compact broadband implantable patch antenna is designed for the field of biotelemetry and experimentally demonstrated using the Medical Device Radiocommunications Service (MedRadio) band (401–406 MHz). The proposed antenna can obtain a broad impedance bandwidth by exciting dual-resonant frequencies, and has a compact structure using bent metal radiating strips and a short strategy. The total volume of the proposed antenna, including substrate and superstrate, is about 479 mm3 (23 × 16.4 × 1.27 mm3). The measured bandwidth is 52 MHz (382–434 MHz) at a return loss of −10 dB. The resonance, radiation and specific absorption rate (SAR) performance of the antenna are examined and characterized.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dattatreya Gopi ◽  
Appala Raju Vadaboyina ◽  
J. R. K. Kumar Dabbakuti

AbstractA simple low profile defected ground structure based monopole circular-shaped patch antenna is proposing for ultrawide-band applications. The design allows for a simple and compact structure on the FR-4 substrate material. The proposed design initially has a meager antenna gain and bandwidth. To increase the antenna bandwidth and gain, the defective ground structure is implemented with four dumble-shaped slots. Parametric analysis is considered to find the radius of circular patch for tuning of UWB frequency applications. The proposed MCP antenna resonates at 2.9 GHz, 9.1 GHz frequencies with a S11 of − 34.84 dB, − 33.74 dB, respectively, and achieves 8.1 GHz (2.5–10.6 GHz) impedance bandwidth concerning the − 10 dB reference line of the reflection coefficient. The gains are 8.4 dBi, 8.2 dBi for the two resonant frequencies, and the radiation patterns are semi-omnidirectional, omnidirectional. The proposed antenna has-been validated by observing good agreement between the simulation and the measured results.


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


A microstrip patch antenna is low profile antenna mounted over a high impedance electromagnetic bandgap (EBG) substrate is proposed. In this paper, Microstrip patch antenna with rectangular EBG structure is proposed and studied. The proposed antenna has compact structure with a total size of 29.44x38.036mm2 . The designed antenna resonates at Particular Single frequency with improved return loss, VSWR and gain. The resonant frequency of the antenna 2.4GHz without and with EBG and improved return loss of -17.61dB and -18.30dB. With rectangular EBG the antenna gives improved gain of 2.09 dB. The Proposed antenna is simulated by using Simulation software ie.(IE3D) and simulated results are in good with practical antenna characteristics.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjiu Li ◽  
Long Li ◽  
Xiwang Dai ◽  
Cheng Zhu ◽  
Feifei Huo ◽  
...  

A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC) technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (aboutλ/25 at 2.45 GHz) due to the shorted pin. The package is mounted on a 44 × 44 mm2ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth(S11< -10 dB)is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.


2021 ◽  
Vol 21 (1) ◽  
pp. 8-14
Author(s):  
Deok Kyu Kong ◽  
Jaesik Kim ◽  
Daewoong Woo ◽  
Young Joong Yoon

A modified proximity-coupled microstrip patch antenna with broad impedance bandwidth is proposed by incorporating proximity-coupled patch antenna into the rectangular open-ended microstrip feed line on a cavity structure. First we design a proximity-coupled microstrip antenna to have a wide bandwidth in the lower band centered at 7 GHz using a cavity-backed ground. To broaden the bandwidth of the antenna to the upper band, we then apply a rectangular open-ended microstrip feed line, adjusting the relative position to the cavity to generate an additional resonance close to 10 GHz. The combination of lower and upper band design results in a broadband antenna with dimensions of 30 mm × 30 mm × 9 mm (0.9λ<sub>0</sub> × 0.9λ<sub>0</sub> × 0.27λ<sub>0</sub>) is designed where λ<sub>0</sub> corresponds to the free space wavelength at a center frequency of 9 GHz. The measurement results verify the broad impedance bandwidth (VSWR ≤ 2) of the antenna at 77% (5.6–12.6 GHz) while the broadside gain is maintained between 6 dBi and 8 dBi within the operational broad bandwidth.


2019 ◽  
Vol 11 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Wafaa Mohammed Hashim ◽  
Asst. prof. Dr. Adheed Hasan Sallomi

a staircase patch microstrip antenna with slots is proposed to cover the 2G/3G/4G cellular mobile base station bands, when the antenna is excited with a transmission line, creates several modes these modes are composite to obtain a large bandwidth. The proposed antenna operates in the band from 0.86 GHz to 4.78 GHz with an impedance bandwidth of 138%. The use of staircase patch antenna is to achieve more attractive performance such as wider bandwidth, better impedance matching and better radiation. Inserting different slots to the patch of the antenna to enhance the gain and return loss. The gain is obtained ranging from 2.18 dBi to 5.3 dBi. Good radiation efficiencies ranging from 70% to 97% is achieved.


2018 ◽  
Vol 7 (5) ◽  
pp. 7-13 ◽  
Author(s):  
S. A. Shandal ◽  
Y. S. Mezaal ◽  
M. F. Mosleh ◽  
M. A. Kadim

In this paper, a pentagon slot inside fractal circular patch microstrip resonator to design compact antenna over partial ground plane is introduced using 3rd iteration of adopted fractal geometry. This antenna is modeled on FR4 substrate with a size of (20 x 18) mm2, thickness of 1.5mm, permittivity of 4.3 and loss tangent of 0.02. The used type of feeding is microstrip line feed. It is designed to operate at wide frequency range of (4.5-9.3) GHz at resonant frequencies of 5.7GHz and 7.9GHz with impedance bandwidth of 4.8 GHz. Both lengths of ground plane Lg and width of feed line Wf are optimized in order to acquire optimum bandwidth. The simulated return loss values are -33 and -41 dB at two resonant frequencies of 5.7 and 7.9 GHz with gain of 3.2 dB. The simulated results offered noteworthy compatibility with measured results. Also, the proposed wideband microstrip antenna has substantial compactness that can be integrated within numerous wireless devices and systems.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3155
Author(s):  
Erfeng Li ◽  
Xue Jun Li ◽  
Boon-Chong Seet

With the rapid development of wireless communication technology and the Internet of Things (IoT), wireless body area networks (WBAN) have been thriving. This paper presents a triband patch antenna with multiple slots for conformal and wearable applications. The proposed antenna operates at 5.8, 6.2, and 8.4 GHz. The antenna was designed with a flexible polyethylene terephthalate (PET) substrate, and the corresponding conformal tests and on-body performance were conducted via simulation. The antenna demonstrated promising gain and acceptable fluctuations when applied on curvature surfaces. The specific absorption rate (SAR) for on-body simulation also suggests that this antenna is suitable for wearable applications.


Sign in / Sign up

Export Citation Format

Share Document