scholarly journals CONSIDERATIONS REGARDING THE RELIABILITY ASSESSMENT OF THE ROLLER BEARING PROVIDING MOVEMENT IN THE DIRECTION OF ANTI-AIRCRAFT GUNS

2021 ◽  
Vol 19 (1) ◽  
pp. 47-52
Author(s):  
Doru LUCULESCU ◽  

This paper analyzes a method of evaluating the reliability of the rolling bearing in anti-aircraft guns. In evaluating its reliability, the factors that depend on the operating conditions of the anti-aircraft gun are taken into account, as well as the factors of design, technology, materials and assembly

Author(s):  
Shashikant Pandey ◽  
Muniyappa Amarnath

Rolling-element bearings are the most commonly used components in all rotating machinery. The variations in the operating conditions such as an increase in the number of operating cycles, load, speed, service temperature, and lubricant degradation result in the development of various defects such as pitting, spalling, scuffing, scoring, etc. The defects that appeared on rolling contact surfaces cause surface deterioration and change in the vibration and sound levels of the bearing system. The present experimental investigations are aimed at assessing the surface fatigue wear that appears on the contact surfaces of roller bearings. The studies considered the estimation of specific film thickness, analysis of surface fatigue wear developed on the rolling-element surfaces, surface roughness analysis, grease degradation analysis using Fourier transform infrared radiation, and vibration and sound signal measurement and analysis. The results obtained from the experimental investigation provide a good correlation between surface wear, vibration, and sound signals with a transition in the lubrication regimes in the Stribeck curve.


Procedia CIRP ◽  
2016 ◽  
Vol 50 ◽  
pp. 796-801
Author(s):  
Julia Lindén ◽  
Anders Söderberg ◽  
Ulf Sellgren

2012 ◽  
Vol 215-216 ◽  
pp. 115-118
Author(s):  
Jia Hong Zheng ◽  
Yu Chun Liu ◽  
Min Li

Today, transmission systems are playing important roles in engineering. For all of the components in them, status of the rolling bearing has been rising. In modern times, people are making great efforts on the optimization of transmission system. At the same time, optimization design of all the internal components was also important. For all the techniques, research to the rolling bearings has become increasingly mature. In this paper, the rolling bearing in growth of box of the 2 MW wind generator was took as the research object. The load coefficient of rolling bearing was been calculated, then the reliability assessment model of the rolling bearing was been made. On the basis of which, the optimization design on the reliability was done.


Author(s):  
Марина Николаевна Ильина ◽  
Дмитрий Васильевич Ларюшкин

Источником информации о техническом состоянии трубопроводов тепловых сетей объектов магистральных нефтепроводов ПАО «Транснефть» являются результаты их обслуживания и ремонта, технического освидетельствования, гидравлических испытаний и т. д. На основании этих данных проводятся расчеты показателей надежности, по итогам анализа которых осуществляется планирование дальнейшего технического обслуживания и ремонта. Однако при оценке надежности систем теплоснабжения необходимо учитывать не только срок эксплуатации и величину амортизационного износа, но и реальное состояние в конкретных условиях функционирования. Учесть многообразие факторов, которые влияют на работоспособность трубопроводов системы теплоснабжения, и тем самым повысить точность расчетов при оценке их остаточного ресурса позволяет применение кластерного анализа в дополнение к используемой методике оценки надежности тепловых сетей. В рамках настоящей работы оценка надежности объектов АО «Связьтранснефть» с применением кластерного анализа проведена на примере равнозначных участков тепловых сетей двух узлов связи, расположенных в Краснодарском крае и Республике Саха (Якутия). Currently, information about technical condition of pipelines of heat supply systems at the facilities of the main oil pipelines of PJSC Transneft is formed based on the results of maintenance and repair, technical inspection, hydraulic tests, etc. Upon these data, calculations of reliability indicators of heat networks are carried out, based on the analysis of calculations further maintenance and repairs are planned. However, when assessing the reliability of heat supply systems, it is necessary to take into account not only the service life and the amount of depreciation wear of heat network elements, but also their real state in specific operating conditions. The use of cluster analysis in addition to the currently used method of heat network reliability assessment allows us to take into account the variety of factors that affect the operability of pipelines of the heat supply system, and thereby increase the accuracy of calculations when assessing their residual resource. Within the framework of this work, the reliability assessment of Svyaztransneft JSC facilities using cluster analysis was carried out on the example of equivalent sections of heat networks of two communication nodes located in the Krasnodar Territory and the Republic of Sakha (Yakutia).


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Simon Kabus ◽  
Michael R. Hansen ◽  
Ole Ø. Mouritsen

The accuracy of the fatigue life calculations in rolling bearing simulations is highly dependent on the precision of the roller-raceway contact simulations. Several different methods exist to simulate these pressure distributions and in time domain bearing simulations, where many contacts need evaluation, the simple and time efficient methods are more popular, yielding erroneous life estimates. This paper presents a new six degree of freedom frictionless quasi-static time domain cylindrical roller bearing model that uses high precision elastic half-space theory to simulate the contact pressures. The potentially higher computational demand using the advanced contact calculations is addressed by preprocessing a series of contacts at different centerline approaches and roller tilt angles, which are used for interpolating contact results during time domain simulations. It is demonstrated that this new model allows for simulation of bearing misalignments, roller centrifugal forces, and flange contact induced roller tilt moments, and that the effect of these conditions is directly evaluated in a detailed fatigue life analysis. Finally, the stiffness of the bearing model is validated against existing experimental data with good correlation.


2009 ◽  
Vol 4 (1) ◽  
pp. 37
Author(s):  
Changting Wang ◽  
Robert X. Gao ◽  
Ruqiang Yan ◽  
Arnaz Malhi

Sign in / Sign up

Export Citation Format

Share Document