scholarly journals "A Phytonutrient Based Brain Activation Complex and Short-Term Brain Function Changes: An Initial Investigation"

2021 ◽  
Vol 6 (5) ◽  
Author(s):  
NE Wolkodoff
2021 ◽  
Vol 22 (9) ◽  
pp. 4511
Author(s):  
Chiara A. De Benedictis ◽  
Claudia Haffke ◽  
Simone Hagmeyer ◽  
Ann Katrin Sauer ◽  
Andreas M. Grabrucker

In the last years, research has shown that zinc ions play an essential role in the physiology of brain function. Zinc acts as a potent neuromodulatory agent and signaling ions, regulating healthy brain development and the function of both neurons and glial cells. Therefore, the concentration of zinc within the brain and its cells is tightly controlled. Zinc transporters are key regulators of (extra-) cellular zinc levels, and deregulation of zinc homeostasis and zinc transporters has been associated with neurodegenerative and neuropsychiatric disorders. However, to date, the presence of specific family members and their subcellular localization within brain cells have not been investigated in detail. Here, we analyzed the expression of all zinc transporters (ZnTs) and Irt-like proteins (ZIPs) in the rat brain. We further used primary rat neurons and rat astrocyte cell lines to differentiate between the expression found in neurons or astrocytes or both. We identified ZIP4 expressed in astrocytes but significantly more so in neurons, a finding that has not been reported previously. In neurons, ZIP4 is localized to synapses and found in a complex with major postsynaptic scaffold proteins of excitatory synapses. Synaptic ZIP4 reacts to short-term fluctuations in local zinc levels. We conclude that ZIP4 may have a so-far undescribed functional role at excitatory postsynapses.


2017 ◽  
Vol 168 ◽  
pp. 12-22 ◽  
Author(s):  
Chunming Lu ◽  
Lifen Zheng ◽  
Yuhang Long ◽  
Qian Yan ◽  
Guosheng Ding ◽  
...  

2005 ◽  
Vol 94 (1) ◽  
pp. 512-518 ◽  
Author(s):  
A. Floyer-Lea ◽  
P. M. Matthews

The acquisition of a new motor skill is characterized first by a short-term, fast learning stage in which performance improves rapidly, and subsequently by a long-term, slower learning stage in which additional performance gains are incremental. Previous functional imaging studies have suggested that distinct brain networks mediate these two stages of learning, but direct comparisons using the same task have not been performed. Here we used a task in which subjects learn to track a continuous 8-s sequence demanding variable isometric force development between the fingers and thumb of the dominant, right hand. Learning-associated changes in brain activation were characterized using functional MRI (fMRI) during short-term learning of a novel sequence, during short-term learning after prior, brief exposure to the sequence, and over long-term (3 wk) training in the task. Short-term learning was associated with decreases in activity in the dorsolateral prefrontal, anterior cingulate, posterior parietal, primary motor, and cerebellar cortex, and with increased activation in the right cerebellar dentate nucleus, the left putamen, and left thalamus. Prefrontal, parietal, and cerebellar cortical changes were not apparent with short-term learning after prior exposure to the sequence. With long-term learning, increases in activity were found in the left primary somatosensory and motor cortex and in the right putamen. Our observations extend previous work suggesting that distinguishable networks are recruited during the different phases of motor learning. While short-term motor skill learning seems associated primarily with activation in a cortical network specific for the learned movements, long-term learning involves increased activation of a bihemispheric cortical-subcortical network in a pattern suggesting “plastic” development of new representations for both motor output and somatosensory afferent information.


2016 ◽  
Vol 40 (11) ◽  
pp. 1671-1678 ◽  
Author(s):  
S Jakobsdottir ◽  
I C van Nieuwpoort ◽  
C C van Bunderen ◽  
M B de Ruiter ◽  
J W R Twisk ◽  
...  

2015 ◽  
Vol 16 (6) ◽  
pp. 775-788 ◽  
Author(s):  
Rumani Singh ◽  
Shaffi Manchanda ◽  
Taranjeet Kaur ◽  
Sushil Kumar ◽  
Dinesh Lakhanpal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document