scholarly journals Ekstrak Daun Rhizophora sp. Menghambat Pertumbuhan Bakteri Streptococcus agalactiae dan Edwarsiella tarda (RHIZOPHORA SP. LEAF EXTRACT INHIBITS THE GROWTH OF Streptococcus agalactiae AND Edwarsiella tarda)

2018 ◽  
Vol 18 (4) ◽  
pp. 604
Author(s):  
Henni Syawal ◽  
Rahman Karnila ◽  
Angraika Dirta ◽  
Ronal Kurniawan

This study aimed to observe the inhibition capability of Rhizophora sp. leaf extract towards the Streptococcus agalactiae and Edwardsiella tarda bacteria. Rhizophora sp. leaf was extracted using ethanol. Inhibition action of Rhizophora sp. leaf extract towards Streptococcus agalactiae and Edwardsiella tarda was tested on TSA solid media. The concentration of Rhizophora sp. leaf extract used were 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000 ppm, and novobiocin antibiotic was used as a control. Each treatment was conducted three times. MIC (minimum inhibition concentration) was performed to determine the minimum dose that could inhibit the bacterial growth. The results showed that the inhibition value of Rhizophora sp. leaf extract at 2000 to 10000 ppm towards Streptococcus agalactiae was 8.60-16.30 mm, and 6.97-12.27 mm towards Edwardsiella tarda, whereas the inhibition value of novobiocin for both bacteria was 18.00-20.45 mm. The results of MIC value at dose of 2.000 ppm of Rhizophora sp. leaf extract was towards Streptococcus agalactiae with bacterial density of 165x108 CFU/mL, and towards Edwardsiella tarda 75x108 CFU/mL, respectively. In conclusion, Rhizophora sp. leaf extract had more bacteriostatic activity against Gram-positive bacteria (Streptococcus agalactiae) rather than the Gram-negative bacteria (Edwardsiella tarda).

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Bipul Biswas ◽  
Kimberly Rogers ◽  
Fredrick McLaughlin ◽  
Dwayne Daniels ◽  
Anand Yadav

Aim.To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coliandSalmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureusandBacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm againstB. cereusandS. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.


2014 ◽  
Vol 1051 ◽  
pp. 392-397
Author(s):  
T.V.M. Sreekanth ◽  
In Yong Eom

Gold nanoparticles (AuNPs) can be prepared in a number of chemical techniques, which are not environmentally friendly. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. In this work, we describe an eco-friendly technique for green synthesis of AuNPs from AuCl4 solution using the Houttuynia cordata leaf extract as reducing agent. The AuNPs were characterized using UV-Visible spectroscopy, SEM, TEM, FTIR and AFM. The UV-Visible spectra indicate a strong plasma resonance that is located at 535 nm. The antibacterial activity of AuNPs was performed on various gram positive and gram negative bacteria. The AuNPs showed more inhibitory activity on gram negative than gram positive bacteria.


Author(s):  
I. M. Uneze ◽  
J. O. Otonko ◽  
A. K. Adigun ◽  
S. J. Adebayo

The synthesis and application of nanoparticles is an important area of research that is gaining attention recently. In this recent project, we report the synthesis of silver nanoparticles, AgNP using aqueous solution of silver nitrate and Gnetum africanum leaf extract (reducing agent). The synthesis of AgNP was achieved by mixing aqueous solution of silver nitrate (70ml, 15.75mM) with a solution of Gnetum africanum leaf extract 100 ml) in a reaction flask and allowed to stand for 24 hours in a dark cupboard. A color change from light brown to yellowish brown was observed which indicated that synthesis of silver nanoparticles took place. The presence of AgNP was ascertained using UV-vis spectra analysis and absorption at 442 nm showed the presence of AgNP. The antioxidant assay of both the synthesized AgNP and the leaf extract was determined using DPPH. Antimicrobial activity was conducted using three different organisms which were Staphylococcus aureus, Escherichia coli and Pseudomonas respectively. The antioxidant results using DPPH scavenging ability of AgNp showed that at concentrations of 2mg/ml,1mg/ml and 0.1mg/ml, the percentage inhibition  of  DPPH  by AgNp was 61.69, 53.06 and 38.31 respectively and that of Gnetum africanum leaf extract was 81.32, 78.49, and 58.29 respectively at the same concentrations using Ascorbic acid as a standard. The antimicrobial activity of both the synthesized AgNps and Gnetum Africanum Leaf extract using one gram positive bacteria (Staphylococcus aureus) and two gram negative bacteria (Escherichia coli and Pseudomonas) revealed that the synthesized AgNps showed lesser activity than Gnetumafricanum leaf extract for both the gram positive bacteria (Staphylococcus aureus) and gram negative bacteria (Pseudomonas) and (Escherichia coli). From the above findings, it can be observed that Gnetum Africanum Leaf extract reduced Ag+ to Ag0 and also both the synthesized AgNps and the Gnetum Africanum Leaf extract showed reasonable antioxidant activity against DPPH and antimicrobial activity against the tested microorganisms. This implied that both samples have medicinal values.


2020 ◽  
Vol 16 (4) ◽  
pp. 449-459
Author(s):  
Varsha Yadav ◽  
Neha Kapoor ◽  
Soma M. Ghorai ◽  
Pradeep

Background: Biosynthesis of nanoparticles from aqueous leaf extract of ‘Selaginella bryopteris’ is a green chemistry approach and is considered to be one of the most efficient methods as it is devoid of toxic chemicals as well as provides natural capping agents for the stabilization of synthesized nanoparticles. ‘S.bryopteris’ also known as ‘Sanjeevani’ (in India), is thought to be prospective natural resource that possesses extraordinary pharmaceutical potential. Objective: S. bryopteris is exclusively native to India and has already been known for its expression of stress-associated genes and high levels of protective metabolites of sugars, phenolic compounds, and polyols. Its potential as an antibacterial agent is being elucidated. Methods: Different leaf extract volumes, silver nitrate (AgNO3) concentrations, and reaction time were investigated separately and the optimal conditions for the synthesis of AgNPs were suggested. The resulting AgNPs were characterized by various techniques like Ultraviolet-Visible (UV-Vis) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD). Antibacterial assays were carried out by using both agar disk and well diffusion method. Results: The AgNPs synthesized in this process were found to have efficient antimicrobial activity against both Gram-positive as well as Gram-negative bacteria. The antibacterial efficacy of S. bryopteris was consciously tried on uropathogenic Escherichia coli (Gram-negative bacteria) and Bacillus megaterium (Gram-positive bacteria) which have the self-limiting food poisoning potential along with opportunistic uropathogenic bacterial strains namely Proteus mirabilis (Gram-negative bacteria) and a non-pathogenic Micrococcus luteus (Gram-positive bacteria) for comparison. Conclusion: S. bryopteris mediated silver nanoparticles’ synthesis is attempted for being cost-effective, eco-friendly and safe for human therapeutics.


2009 ◽  
Vol 6 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Baghdad Science Journal

A study were conducted to examinate the effect of organic and aqueous (Hot, Cold) Extracts from leaves of Duranta repens on the growth and activities of the following types of Bacteria:- Staphylococcus aureus,Streptococcus pyogens ,Escherichia coli,Klebsilla pneumonia, in addition to the yeast Candida albicans and the fungi Aspergullis niger ,Aspergulls flavus.The result showed that gram Positive Bacteria is more sensitive to the extracts than gram negative bacteria with Minimum inhibitory concentration (MIC) value (50,25,50,100)% and Minimum Bactericidal Concentration (MBC) value (100,50,200,100)% for all types Bacteria respectively . The most active extract against A.niger ,A,flavus was cold and hot aqueous extract from the leaves with diameter growth of colony value of ( 0.93,0.37)cm for A.niger in 20 % concentration compared with organic extract (0.26)cm, and the inhibition zone value of cold and hot extract to A.flavus (0.90,0.80)cm respectively compared with organic extract (7.056)cm.


2021 ◽  
Vol 883 (1) ◽  
pp. 012056
Author(s):  
S J Nendissa ◽  
D M Nendissa

Abstract Kafir lime leaf (Citrus hystrix) is a plant from the citrus tribe that has long been known by community as flavor ingredient. To support its use and increase its application in supporting food safety, a test the inhibition of on kaffir lime leaf extract against pathogenic bacteria, namely Gram Negative Bacteria (Escherichia coli, Salmonella typhimurium) and Gram Positive bacteria (Staphylococcus aereus, P. aeroginosa). Making kaffir lime leaf extract (Citrus hystrix) was done by weighing 150g of lime leaf powder, then immersing in 96% ethanol solution and leaving for + 3 days. Kaffir lime leaf extract was dissolved with sterile distilled aquades to obtain a concentration of 5%, 10% and 15%. The antibacterial activity of kaffir lime leaf extract was tested by diffusion method using disc paper to determine of the bacterial growth inhibition area. The results showed that kaffir lime extract had antibacterial activity inhibition of 12,78 mm of S. aereus, 9 mm of E.coli, 7,12 mm of S. typhimurium and 9,3 mm of P. aeroginosa. Kaffir lime leaf extract has inhibition effectiveness for gram positive bacteria Staphylococcus aereus and gram negative bacteria E. coli, Salmonella typhimurium, P. aeroginosa. Thus, kaffir lime leaf extract can be used as a decontaminant agait theses 4 type of bacteria, especially Staphylococcus aereus which has a strong inhibitory power, so it can maintain quality and increase the safety of mead based foods


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2020 ◽  
Vol 8 (1) ◽  
pp. 122
Author(s):  
Eghbert Eghbert Elvan Eghbert Elvan Ampou ◽  
Iis Iis Triyulianti ◽  
Nuryani Widagti ◽  
Suciadi Catur Nugroho ◽  
Yuli Pancawati

Research on hard coral (Scleractinian coral) contaminated with bacteria is still not much done, especially in Indonesian waters. This study took samples of coral mucus in 2010 at 3 (three) different locations, namely Bunaken (May); Morotai (September) and Raja Ampat (November), which focused on the analysis of Research on hard coral (Scleractinian coral) contaminated with bacteria is still not much done, especially in Indonesian waters. This study took samples of coral mucus in 2010 at 3 (three) different locations, namely Bunaken (May); Morotai (September) and Raja Ampat (November), which focused on the analysis of gram-positive and gram-negative bacteria. The method used for field sampling is time swim, which is by diving at a depth of 5-10 meters for ± 30 minutes and randomly taking samples of coral mucus using siring or by taking directly on corals (reef branching). Mucus samples were analyzed by bacterial isolation in the laboratory. The result shows that there were differences between gram-positive and gram-negative bacteria in the three research sites and that gram-positive bacteria were higher or dominant. Further research that can identify the bacteria species and explain its relationship to the ecosystem is highly recommended.Keywords: Bacteria, Scleractinian coral, gram-positive and -negative, Bunaken, Morotai, Raja Ampat  AbstrakPenelitian tentang karang keras (Scleractinian coral) yang terkontaminasi bakteri masih belum banyak dilakukan, terutama di perairan Indonesia. Penelitian ini mengambil sampel mucus karang pada tahun 2010 di 3 (tiga) lokasi berbeda, yakni Bunaken (Mei); Morotai (September) dan Raja Ampat (November), yang difokuskan pada analisis bakteri gram postif dan gram negatif. Metode yang digunakan untuk pengambilan sampel di lapangan adalah time swim, yaitu dengan penyelaman pada kedalaman 5-10 meter selama ±30 menit dan mengambil sampel mucus karang secara acak menggunakan siring atau dengan mengambil langsung pada karang (fraksi cabang). Sampel mucus dianalisis dengan cara isolasi bakteri di laboratorium. Hasil analisis menunjukkan bahwa ada perbedaan antara bakteri gram positif dan gram negative di tiga lokasi survei dan bakteri gram positif lebih tinggi atau dominan. Penelitian lebih lanjut yang dapat menentukan jenis bakteri serta menjelaskan hubungannya dengan ekosistem sangat disarankan untuk dilakukan.Kata Kunci : Bakteri, Scleractinian coral, gram positif dan negatif, Bunaken, Morotai, Raja Ampat


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 789
Author(s):  
Shih-Fu Ou ◽  
Ya-Yun Zheng ◽  
Sin-Jen Lee ◽  
Shyi-Tien Chen ◽  
Chien-Hui Wu ◽  
...  

Graphene quantum dots, carbon nanomaterials with excellent fluorescence characteristics, are advantageous for use in biological systems owing to their small size, non-toxicity, and biocompatibility. We used the hydrothermal method to prepare functional N-doped carbon quantum dots (N-CQDs) from 1,3,6-trinitropyrene and analyzed their ability to fluorescently stain various bacteria. Our results showed that N-CQDs stain the cell septa and membrane of the Gram-negative bacteria Escherichia coli, Salmonellaenteritidis, and Vibrio parahaemolyticus and the Gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. The optimal concentration of N-CQDs was approximately 500 ppm for Gram-negative bacteria and 1000 ppm for Gram-positive bacteria, and the exposure times varied with bacteria. N-Doped carbon quantum dots have better light stability and higher photobleaching resistance than the commercially available FM4-64. When excited at two different wavelengths, N-CQDs can emit light of both red and green wavelengths, making them ideal for bioimaging. They can also specifically stain Gram-positive and Gram-negative bacterial cell membranes. We developed an inexpensive, relatively easy, and bio-friendly method to synthesize an N-CQD composite. Additionally, they can serve as a universal bacterial membrane-staining dye, with better photobleaching resistance than commercial dyes.


Sign in / Sign up

Export Citation Format

Share Document