scholarly journals PROLONGED LIFESPAN OF AGING RAT AFTER XENOTRANPLANTATION OF HUMAN UMBILICAL CORD MESENCHYMAL STEM CELLS (hUC-MSCs)

2020 ◽  
Vol 21 (4) ◽  
pp. 539-549
Author(s):  
Elpita Tarigan ◽  
Adisti Dwijayanti ◽  
Frans Dhyanagiri Suyatna ◽  
Indra Bachtiar ◽  
Sandy Qlintang ◽  
...  

Currently, mesenchymal stem cells (MSCs) for implementing regenerative medicine in aging become interest in medical research science, especially in degerative disease and other aging problems. This research was aimed to determine the effectiveness of hUC-MSCs on inhibiting the aging process through the lifetime of the rat and the effect of intravenous administration of hUC-MSCs in phisiologycally aging female rat on the blood analysis. This study was used 40 aged female rats with 29-30 months of age divided into four groups with 10 rats each. The control rat group was given physiological NaCl (0.9%) 0.5 mL, and the treated rat group was given hUC-MSCs 1x107 cells/kg body weight in 0.5 mL NaCl 0.9%, was injected intravenously in caudo lateralis tail vein with stratified frequency; one time injection (SC1), three times injections (SC3) and five times injections (SC5). Perifer blood was collected from retro-ortbital sinus vein 30 days before and after injection of hUC-MSCs for hematology and blood chemistry analysis. Based on the results were obtained, it indicated that hUC-MSCs increased the survival of aging rat were in treatment group, life span of rats was extended up to 40 months compared to the average life of control rat aged up to 34±2 months. The injection of hUC-MSCs 1x107 cells/kg of body weight with one, three and five times injection were affected to blood profiles and blood chemistry with correlation were low. The conclusions are hUC-MSCs extend the lifespan of aging rat and were affect the blood in general but in normal range of aging rat, affect in ALT and creatinin as tissue repair and tolerated by aging rat.

Author(s):  
Wining Astini

The increasing population of aged people will have the important role in the life, but the function of their bodies will decrease because of aging. Aging will increase the risk of degenerative disease, one of example is diabetes. The disease is related to the aging in the pancreatic organ which progressively declines by age. The aimed of the experiment was to determine the effect of human wharton’s jelly mesenchymal stem cells by injecting intravenously in aging female rats. This study used 3 young female rats (3 months) and 6 aging female rats (24 months). The experiment consisted of three groups. The young control group (A), the aging control group (B) that received NaCl (0.9%) 0,4 mL, the aging treatment group (C) received 1 x 106 cells/kg of human wharton’s jelly mesenchymal stem cells 0,4 mL. The aging control and the aging treatment group were injected 4 times with the interval in 3 months. The end of the experiment (12 months), the rats were anesthetized and sacrificed. The pancreatic tissues were collected to examine the pancreatic islets by histology studies. Changes of the pancreatic islet in control and treated groups were examined using hematoxylin and eosin staining. These findings conclude that injecting human wharton’s jelly mesenchymal stem cell increase the diameter and total pancreatic islet in the treatment group. In other side, the cell population of pancreatic islet also have significant differences (P<0.05) in treated physiological aging female rat groups than control aging female rat group.


2018 ◽  
Vol 35 (1) ◽  
pp. 369-374
Author(s):  
Omayma A.R. AbouZaid ◽  
Laila A Rashed ◽  
S. M. El-Sonbaty ◽  
Aboel-Ftouh A. I

2020 ◽  
Vol 20 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lei Yang ◽  
Shuoji Zhu ◽  
Yongqing Li ◽  
Jian Zhuang ◽  
Jimei Chen ◽  
...  

Background: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. Objective: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. Methods: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p− group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes—including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin—were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. Results : After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p− group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. Conclusion: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.


Sign in / Sign up

Export Citation Format

Share Document