scholarly journals Experimental investigation of DI diesel engine fuelled by biodiesel with Nano additives

Author(s):  
R. Rajasekar ◽  
P. Naveenchandran

The demand for fuel is increasing everyday life and its risks poses a serious problem to this globalization. It is an unprecedented alternative fuel source for biodiesel designed to increase the value of fossil fuels and increase the longevity and purity of the diesel engine. The origin of fossil fuels will decrease in the coming years, besides, the price and demand for fuel will be rare. The negative environmental barrier prompted researchers to find alternative fuels for fossil fuels. Biodiesel from watermelon seed oil (WSO) had a lot of appeal and could be a different alternative to diesel without any mechanical modifications. This will help protect the environmental status of crude oil in oil imports, which is expected to increase by 82% by 2020. The present study focuses on the comparative behavior of B20 [1], which is zirconium dioxide (ZrO2) with various nanoparticles. In some cases, Zirconia is the white crystalline oxide of Zirconia, so it’s most natural form with a monoclinic crystal structure is batiste ore. Zirconium dioxide (ZrO2) with 20% watermelon seed oil biodiesel + 80% diesel (B20). The compounds were mixed with 20 particles per million (ppm), 40 ppm, B20 with 60 ppm and B20 with a magnetic motion for 30 min, followed by sonication of the nanoparticles for 30 min, respectively. Biodiesel compounds at a B20 ratio in diesel fuel increase efficiency and reduce emissions of hydrocarbons, carbon monoxide and smoke due to the emission of nitrogen oxides due to better combustion properties. Criticisms conclude that additional applications of biodiesel are best for improving combustion efficiency and reducing emissions.

Author(s):  
S. Ganesan ◽  
S. Mahalingam ◽  
J. SenthilKumar ◽  
J. Hemanandh ◽  
S.P. Venkatesan ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 93 ◽  
Author(s):  
Anh Tuan Hoang

Pure vegetable oils have the greatest promise for alternative fuels for internal combustion engines beside the depletion of conventional petroleum resources. Among various possible options, pure vegetable oils present promising of greener air substitutes for fossil fuels. Pure vegetable oils, due to the agricultural origin, liquidity, ready availability, renewability, biodegradability are able to reduce the CO2 emissions in the atmosphere. Also, in Vietnam, pure vegetable oils such as soybean oil (SoO100), coconut oil (CO100) and sunflower oil (SuO100) are available. The paper presents the results of using heated pure vegetable oils for diesel engine D243 with power of 80 hp (58.88) kW. The results of determining the power (Ne), specific fuel consumption (SFC) and efficiency (n) are used to evaluate the performance of engine. The results show that, the engine power (Ne) is 10%-15% lower, the SFC of engine D243 using pure vegetable oils is 3%-5% higher and the η is 2.5%-6.2% lower compared to diesel oil (DO). Among the pure vegetable oils, the best performance results for D243 diesel engine are obtained from heated pure sunflower oil up to 135oC.


Energy ◽  
2018 ◽  
Vol 145 ◽  
pp. 238-245 ◽  
Author(s):  
M.A. Asokan ◽  
S. Senthur prabu ◽  
Shikhar Kamesh ◽  
Wasiuddin Khan

2013 ◽  
Vol 768 ◽  
pp. 218-225 ◽  
Author(s):  
M. Parthasarathy ◽  
J. Isaac Joshua Ramesh Lalvani ◽  
B. Parthiban ◽  
K. Annamalai

Random extraction and consumption of fossil fuels have leads to a reduction in petroleum reserves. As for as developing countries like India is connected the need to search for alternative fuels is most urgent as India is heavily dependent upon the import of petroleum to meet its demands for automotive and power sectors. This has inspired curiously in alternative sources for petroleum based fuels. An alternative fuel must be economically competitive and environmentally acceptable. India has great potential for production of biofuels like Biodiesel from vegetable seeds. In the quest to find an alternative to the existing diesel and petrol fuels various Biodiesel and alcohol has been tried and tested in the Internal Compression engine. In this direction, an attempt has been made to investigate the performance and emission characteristic of Biodiesels and compare it with diesel. The Biodiesels considered are Tamanu, Mahua and Pongamia were tested with four stroke diesel engine. A drastic improvement in reduction of Hydrocarbon (HC) and Carbon monoxide (CO) were found for Biodiesels at high engine loads. Smoke and Nitrogen oxides (NOx) were slightly higher for Biodiesels. Biodiesels exposed similar combustion stages to diesel fuel. Therefore use of transesterified vegetable oils can be partially substituted for the diesel fuel at most operating conditions in term of the performance parameters and emissions without any engine modification.


Author(s):  
Bob Apprill ◽  
Logan Coen ◽  
Brian Gessler ◽  
Jonathan Mattson ◽  
Christopher Depcik

Fossil fuels place a large strain on the environment due to the pollution produced through their extraction and usage. One method to reduce societal fossil fuel usage is through co-combustion of coal with woody biomass. However, overproduction of this biomass may lead to significant environmental deterioration. A potential sustainable substitute for the woody biomass is in the form of dried algae. Because the emission characteristics of algae combustion are unknown, a simple dry mass combustor was constructed, including necessary instrumentation, as part of an undergraduate design class with the goal of a more thorough characterization of algae’s combustion properties. The combustor is a simple and affordable design, in keeping with the classes’ principles of sustainability through a focus on energy, environment, and economy. The combustor consists of a flow controller that sends air into a metallic plenum, where modulations in flow are reduced before it is sent to a steel pipe for combustion. This paper describes the concepts involved in the design of this combustor, and preliminary assessment efforts employing the system when testing biomass pellets. Testing showed combustion efficiency greater than 98%, and the data clearly illustrates three separate phases to the reaction process, with rapid changes in emissions and temperature punctuating the ends of these phases.


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


2021 ◽  
Author(s):  
Marcin Zacharewicz ◽  
Tomasz Kniaziewicz

The paper presents the results of model and empirical tests conducted for a marine diesel engine fueled by a blend of n-butanol and diesel oil. The research were aimed at assessing the usefulness of the proprietary diesel engine model in conducting research on marine engines powered by alternative fuels to fossil fuels. The authors defined the measures of adequacy. On their basis, they assessed the adequacy of the mathematical model used. The analysis of the results of the conducted research showed that the developed mathematical model is sufficiently adequate. Therefore, both the mathematical model and the computer program based on it will be used in further work on supplying marine engines with mixtures of diesel oil and biocomponents.


Author(s):  
K. R. Balasubramanian ◽  
R. Anand ◽  
B. Venkatesh ◽  
G. R. Kannan ◽  
S. P. Sivapirakasam

The world needs an alternative fuels that could maintain the world running on its wheels due to the increasing energy demand and uncertainty in availability of the fossil fuels. The present investigation analyzes the scope of utilizing the Deccan hemp oil based biodiesel derived from jute seed as an alternative to the diesel. Experimental investigation was carried out at diesel engine with different loads from 0% to 100% and 10% overload condition under a constant speed of 1500 rpm. It was found that the reduction in brake thermal efficiency and higher brake specific fuel consumption was observed with biodiesel in comparison with diesel. The carbon monoxide (CO), carbon-dioxide (CO2), unburnt hydrocarbon (HC) and nitric oxide (NO) emissions for Deccan hemp oil based biodiesel were reduced by 0.2% vol, 1.6% vol, 62.5%, 36.84% whereas slightly higher smoke emission was observed when compared to diesel fuel. These studies revealed that Deccan hemp oil based biodiesel can be used as a fuel in compression ignition engine without any engine modifications.


2014 ◽  
Vol 592-594 ◽  
pp. 1559-1563
Author(s):  
Thangaraju Rajasekaran ◽  
K. Duraisamy ◽  
K.R. Arvindd ◽  
D. Thamilarasu ◽  
Venkatachalam Chandraprabu ◽  
...  

Depletion of fossil fuels, unaffordability of conventional fuels (petrol, diesel) and atmospheric pollution lead researchers to develop alternative fuels. Fuels derived from renewable biological resources used in diesel engines are known as biodiesel. Biodiesel is environmental friendly liquid fuel similar to petrol and diesel in combustion properties. Increasing environmental concern, diminishing petroleum reserves and agriculture based economy of our country are the driving forces to promote biodiesel as an alternate fuel. Hydrogen seems to be viable fuel to meet sustainable energy demand with minimum environmental impact. Hydrogen has high calorific value and clean burning characteristics which makes it effective fuel for future. It was found that hydrogen usage reduce emissions such as CO2and HC. India is one of the largest producers of neem oil and its seed contains 30% oil content. It is an untapped source in India, so the neem oil usage will be a best option. The investigation made on pure neem oil and neem oil with hydrogen addition at different flow rate (2 lpm & 4 lpm) in CI engines. The result shows that, brake thermal efficiency of neem oil with 4 lpm hydrogen was increased to 7.98% compare to pure neem oil at 4 Nm torque and fuel consumption of neem oil with 4 lpm hydrogen was decreased to 13.49% compared to pure neem oil at 4 Nm torque.


Sign in / Sign up

Export Citation Format

Share Document