scholarly journals Potensi Perolehan Energi Listrik dalam Proses Pengolahan Limbah Tahu Melalui Microbial Fuel Cell (MFC)

2020 ◽  
Vol 3 (2) ◽  
pp. 41-50
Author(s):  
Ayu Diah Syafaati ◽  
Diana Rahayuning Wulan ◽  
Irwan Nugraha

Abstract - The need of energy in Indonesia was increasing and encouraging to develope some efficient   renewable   technology   and   environmental   friendly   researches.   One   of   the alternative energy that can be used is Microbial Fuel Cell (MFC). Microbial Fuel Cell (MFC) works by using microorganisms to degrade organic compounds that can generate electrical energy.   Several   studies   have   been   conducted   on   Single   Chamber   MFC.   In   this   study, conducted to determine the effect of wastewater treatment through Stack Microbial Fuel Cell (MFC) on current producing. The system used carbon brush electrode, Proton Exchange Membrane (PEM) as cation exchanger, tofu liquid waste as source of substrate, and bacterial isolated tofu liquid waste as degrading organic substrate, that has known in system's ability to generate electrical energy as well as reduce COD value. Optical Density (OD) value was measured to determine the metabolic activity of bacteria, with wavelength 570 nm. The research showed that Microbial Fuel Cell (MFC) that lasted for 72 hours resulted potential of electrical current  0.96 mA at  Stack MFC and Blank 0,43 mA.  The acquisition of electric current Stack MFC was greater than Blank Single Chamber. In addition, it also decreased Chemical Oxygen Demand (COD) value in the range of 28-38%. Keywords -  Chemical Oxygen Demand, Current, Microbial Fuel Cell , Stack MFC, Tofu liquid waste

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Md. Abdul Halim ◽  
Md. Owaleur Rahman ◽  
Mohammad Ibrahim ◽  
Rituparna Kundu ◽  
Biplob Kumar Biswas

Finding sustainable alternative energy resources and treating wastewater are the two most important issues that need to be solved. Microbial fuel cell (MFC) technology has demonstrated a tremendous potential in bioelectricity generation with wastewater treatment. Since wastewater can be used as a source of electrolyte for the MFC, the salient point of this study was to investigate the effect of pH on bioelectricity production using various biomass feed (wastewater and river water) as the anolyte in a dual-chambered MFC. Maximum extents of power density (1459.02 mW·m−2), current density (1288.9 mA·m−2), and voltage (1132 mV) were obtained at pH 8 by using Bhairab river water as a feedstock in the MFC. A substantial extent of chemical oxygen demand (COD) removal (94%) as well as coulombic efficiency (41.7%) was also achieved in the same chamber at pH 8. The overall performance of the MFC, in terms of bioelectricity generation, COD removal, and coulombic efficiency, indicates a plausible utilization of the MFC for wastewater treatment as well as bioelectricity production.


2016 ◽  
Vol 14 (2) ◽  
pp. 96 ◽  
Author(s):  
Yulian Mara Alkusma ◽  
Hermawan Hermawan ◽  
H Hadiyanto

ABSTRAKEnergi  memiliki  peranan penting dalam proses pembangunan yang pada akhirnya untuk mencapai tujuan sosial,  ekonomi  dan  lingkungan  untuk  serta  merupakan  pendukung bagi kegiatan  ekonomi  nasional. Sumber energi terbarukan yang berasal dari pemanfaatan biogas limbah cair kelapa sawit dapat menghasilkan energi listrik yang saat ini banyak bergantung pada generator diesel dengan biaya yang mahal.Limbah cair kelapa sawit (Palm Oil Mill Effluent atau POME) adalah limbah cair yang berminyak dan tidak beracun, berasal dari proses pengolahan minyak kelapa sawit, namun limbah cair tersebut dapat menyebabkan bencana lingkungan apabila tidak dimanfaatkan dan dibuang di kolam terbuka karena akan melepaskan sejumlah besar gas metana dan gas berbahaya lainnya ke udara yang menyebabkan terjadinya emisi gas rumah kaca. Tingginya kandungan Chemical Oxygen Demand (COD) sebesar 50.000-70.000 mg/l dalam limbah cair kelapa sawit memberikan potensi untuk dapat di konversi menjadi listrik dengan menangkap biogas (gas metana) yang dihasilkan melalui serangkaian tahapan proses pemurnian. Di Kabupaten Kotawaringin Timur terdapat 36 Pabrik Pengolahan Kelapa Sawit yang total kapasitas pabriknya adalah sebesar 2.115 TBS/jam, menghasilkan limbah cair sebesar 1.269 ton limbah cari/jam dan mampu menghasilkan 42.300 m3 biogas.Kata kunci:  Renewable Energy, Plam Oil Mill Effluent, Chemical Oxygen Demand, Biogass, Methane. ABSTRACTEnergy has an important role in the development process and ultimately to achieve the objectives of social, economic and environment for as well as an environmental support for national economic activity. Renewable energy source derived from wastewater biogas utilization of oil palm can produce electrical energy which is currently heavily dependent on diesel generators at a cost that mahal.Limbah liquid palm oil (Palm Oil Mill Effluent, or POME) is the wastewater that is greasy and non-toxic, derived from the processing of palm oil, but the liquid waste could cause environmental disaster if not used and disposed of in open ponds because it will release large amounts of methane and other harmful gases into the air that cause greenhouse gas emissions. The high content of Chemical Oxygen Demand (COD) of 50000-70000 mg / l in the liquid waste palm oil provides the potential to be converted into electricity by capturing the biogas (methane gas) produced through a series of stages of the purification process. In East Kotawaringin there are 36 palm oil processing factory that total factory capacity is of 2,115 TBS / hour, producing 1,269 tons of liquid waste wastewater / h and is capable of producing 42,300 m3 of biogas.Keywords:  Renewable Energy, Plam Oil Mill Effluent, Chemical Oxygen Demand, Biogass, MethaneCara sitasi: Alkusma, Y.M., Hermawan, dan Hadiyanto. (2016). Pengembangan Potensi Energi Alternatif dengan Pemanfaatan Limbah Cair Kelapa Sawit sebagai Sumber Energi Baru Terbarukan di Kabupaten Kotawaringin Timur. Jurnal Ilmu Lingkungan,14(2),96-102, doi:10.14710/jil.14.2.96-102


2013 ◽  
Vol 68 (9) ◽  
pp. 1914-1919 ◽  
Author(s):  
Gai-Xiu Yang ◽  
Yong-Ming Sun ◽  
Xiao-Ying Kong ◽  
Feng Zhen ◽  
Ying Li ◽  
...  

Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5–200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.


2013 ◽  
Vol 68 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Jin-Tao Li ◽  
Shao-Hui Zhang ◽  
Yu-Mei Hua

The effects of pH, chemical oxygen demand (COD) concentration and external resistance on denitrifying microbial fuel cell were evaluated in terms of electricity generation characteristics and pollutant removal performance. The results showed that anodic influent with weakly alkaline or neutral pH and cathodic influent with weakly acidic pH favored pollutant removal and electricity generation. The suitable influent pH of the anode and cathode were found to be 7.5–8.0 and 6.0–6.5, respectively. In the presence of sufficient nitrate in the cathode, higher influent COD concentration led to more electricity generation and greater pollutant removal rates. With an anodic influent pH of 8.0 and a cathodic influent pH of 6.0, an influent COD concentration of 400 mg/L was deemed to be appropriate. Low external resistance favored nitrate and COD removal. The results suggest that operation of denitrifying microbial fuel cell at a lower external resistance would be desirable for pollutant removal but not electricity generation.


2021 ◽  
Vol 226 ◽  
pp. 00032
Author(s):  
Nadiyah Faizi Polontalo ◽  
Falvocha Alifsmara Joelyna ◽  
Abdullah Malik Islam Filardli ◽  
Hadiyanto Hadiyanto ◽  
Zainul Akmar Zakaria

Nowadays, Indonesia is faced with an increase in human growth, and followed by increasing electricity demand. One of the environmental friendly alternative energy that can solve this problem is microbial fuel cell, which utilizes organic matter as a substrate of bacteria in carrying out its metabolic activities to produce electricity. In this study, investigated the electrical energy produced by Microalgae Microbial Fuel Cell (MMFC) using Chlorella vulgaris and “Batik” wastewater. This study aims to assess the performance of the MMFC system based on the influence of yeast (8 g L−1 and 4 g L−1), “Batik wastewater” concentration (50 % and 100 %), and graphite electrodes (1:1 and 2:2). The MMFC system was carried out by filling anode chamber with “Batik” wastewater and the cathode with C. vulgaris. MMFC simulation was operated for 7 d. Concentration of 100 % “Batik” wastewater and 2:2 number of electrodes gave the best result in MMFC with voltage 0.115 Volt, algae absorbance 0.666. The COD decreased from 824 mg L−1 to 752 mg L−1 after the MMFC. The addition of 8 g L−1 yeast gave the optimum of bioelectricity production reached 0.322 Volt and the microalgae grew until the absorbance reached 1.031.


2020 ◽  
Vol 12 (2) ◽  
pp. 1-9
Author(s):  
Vidia Wahyu Meidy Safitri ◽  
Tuhu Agung Rachmanto

ABSTRAK Limbah cair tahu mengandung kandungan organik tinggi dengan konsentrasi COD 1408 mg/l, TSS 191 mg/l dan pH 4,46.  Salah satu penelitian dengan pemanfaatan limbah dan energi yaitu Microbial Fuel cell (MFC). Energi Kimia senyawa organik dari mikroorganisme akan dirubah menjadi energi listrik dengan reaksi katalik dari mikroorganisme dalam keadaan anaerob merupakan proses microbial fuel cells. Salah satu tantangan untuk mengembangkan sistem MFC adalah dengan memilih elektroda yang tepat. Elektroda yang digunakan harus memiliki daya konduktifitas listrik tinggi, pemukaan yang luas, non korosif, biokompatibel, stabil. Penelitian ini bertujuan untuk memgetahui jenis elektroda optimum dalam menghasilkan power density dengan variasi elektroda karbon grafit, seng dan tembaga, variasi waktu 0, 48, 96, 144, dan 192 jam. Dilakukan pre-treatment koagulasi flokulasi. Hasil penelitian menunjukkan bahwa MFC dengan elektroda karbon grafit dan karbon grafit menghaslikan power density sebesar 2292,994 mW/m2. MFC juga menurunkan konsentrasi COD hingga 88%. Waktu pengolahan dapat mempengaruhi efisiensi penyisihan COD.   Kata kunci: limbah tahu, microbial fuel cell, power density   ABSTRACT   Tofu liquid waste contains high organic content with a COD concentration of 1408 mg / l, TSS 191 mg / l and pH 4.46. One of the researches related to waste and energy utilization is Microbial Fuel cell (MFC). Chemical energy organic compounds from microorganism will be converted into electrical energy by the catalytic reaction of microorganism in anaerobic conditions is a process of microbial fuel cells. One of the challenges to developing an MFC system is to choose the right electrodes. The electrodes used must have high electrical conductivity, a wide surface, non-corrosive, biocompatible, stable. This study aims to find out the most optimum type of electrode in producing power density with variations of carbon graphite, zinc and copper, variations of 0, 48, 96, 144, and 192 hours. The pre-treatment are Coagulation-flocculation. The results showed that MFC with carbon graphite and carbon graphite electrodes produced a power density of 2292,994 mW/m2. MFC also reduces COD concentrations up to 88%. Processing time can affect the efficiency of COD removal.   Keywords: Tofu Liquid Waste, Microbial Fuel Cells, power density


2014 ◽  
Vol 69 (12) ◽  
pp. 2548-2553 ◽  
Author(s):  
Y. Lee ◽  
S. W. Oa

A cylindrical two chambered microbial fuel cell (MFC) integrated with an anaerobic membrane filter was designed and constructed to evaluate bioelectricity generation and removal efficiency of organic substrate (glucose or domestic wastewater) depending on organic loading rates (OLRs). The MFC was continuously operated with OLRs 3.75, 5.0, 6.25, and 9.38 kg chemical oxygen demand (COD)/(m3·d) using glucose as a substrate, and the cathode chamber was maintained at 5–7 mg/L of dissolved oxygen. The optimal OLR was found to be 6.25 kgCOD/(m3·d) (hydraulic retention time (HRT) 1.9 h), and the corresponding voltage and power density averaged during the operation were 0.15 V and 13.6 mW/m3. With OLR 6.25 kgCOD/(m3·d) using domestic wastewater as a substrate, the voltage and power reached to 0.13 V and 91 mW/m3 in the air cathode system. Even though a relatively short HRT of 1.9 h was applied, stable effluent could be obtained by the membrane filtration system and the following air purging. In addition, the short HRT would provide economic benefit in terms of reduction of construction and operating costs compared with a conventional aerobic treatment process.


2015 ◽  
Vol 1113 ◽  
pp. 823-827 ◽  
Author(s):  
Nik Mahmood Nik Azmi ◽  
Nazlee Faisal Ghazali ◽  
Ahmad Fikri ◽  
Md Abbas Ali

A membrane-less and mediator-less system was designed and tested with wastewater sample as fuel to generate electricity. Microorganisms were first isolated from the wastewater sample to pure culture and were used as the ‘machinery’ that converts wastewater into energy. The wastewater samples were treated either by sterilization or non-sterilization methods. These tests were run using a modified air-cathode single chamber microbial fuel cell (MFC). By sterilizing the wastewater, the calculated power density was much lower compared to non-sterilized wastewater indicating a significant role of microbial activity in the SCMFC system and substrate availability. Furthermore, mixed culture was observed to give larger power density compared to an individual microbe (18.42 ± 5.84 mW/m2 for mixed culture and 8.82 ± 4.56 mW/m2 to 9.46 ± 4.87 mW/m2 for individual microbe, Bukholderi capecia and Acidovorax sp. respectively) to prove that larger power value could be achieved with a mixed microbial system. In addition, the system proved to remove 68.57% of chemical oxygen demand (COD) of the wastewater sample tested. In conclusion, the designed SCMFC has been proven capable of power generation and wastewater treatment comparable to other SCMFCs to date.


Sign in / Sign up

Export Citation Format

Share Document