scholarly journals Simple Energy Aware Scheduler: An Empirical Evaluation

2018 ◽  
Vol 21 (2) ◽  
Author(s):  
Alexander Perez Campos ◽  
Juan Manuel Rodriguez ◽  
Alejandro Zunino

Mobile devices have evolved from single purpose devices, such as mobile phone, into general purpose multi-core computers with considerable unused capabilities. Therefore, several researchers have considered harnessing the power of these battery-powered devices for distributed computing. Despite their ever-growing capabilities, using battery as power source for mobile devices represents a major challenge for applying traditional distributed computing techniques. Particularly, researchers aimed at using mobile devices as resources for executing computationally intensive task. Different job scheduling algorithms were proposed with this aim, but many of them require information that is unavailable or difficult to obtain in real-life environments, such as how much energy would require a job to be finished. In this context, Simple Energy Aware Scheduler (SEAS) is a scheduling technique for computational intensive Mobile Grids that only require easily accessible information. It was proposed in 2010 and it has been the base for a range of research work. Despite being described as easily implementable in real-life scenarios, SEAS and other SEAS-improvements works have always been evaluated using simulations. In this work, we present a distributed computing platform for mobile devices that support SEAS and empirical evaluation of the SEAS scheduler. This evaluation followed the methodology of the original SEAS evaluation, in which Random and Round Robin schedulers were used as baselines. Although the original evaluation was performed by simulation using notebooks profile instead of smartphones and tablets, results confirms that SEAS outperforms the baseline schedulers.

Author(s):  
Michele Ermidoro ◽  
Andrea Vitali ◽  
Fabio Previdi ◽  
Caterina Rizzi

Abstract Mobile devices and laptops are the main ICT tools to exchange information among people in the world. All the applications are designed by following a specific interaction style based either touchscreen or mouse and keyboard, which can be performed only with detailed movements of hands and fingers. Traditional interaction becomes difficult for elderly who have diseases limiting the hand motor skills, such as arthritis and brain stroke. The use of simple air gestures can be adopted as alternative interaction style to interact with smartphones, tablets and laptops. The aim of this research work is the development of an application that allows text writing using air gestures for people with limited hand motor skills. The application embeds several computer vision algorithms and convolutional neural networks software modules to detect and drawn alphanumeric characters and recognizing them using both mobile devices and laptops. The preliminary results obtained show that the approach is robust, and it can easily detect the alphanumeric characters written with the movement of the wrist.


Author(s):  
Emanuele Frontoni ◽  
Adriano Mancini ◽  
Primo Zingaretti ◽  
Andrea Gatto

Advanced technical developments have increased the efficiency of devices in capturing trace amounts of energy from the environment (such as from human movements) and transforming them into electrical energy (e.g., to instantly charge mobile devices). In addition, advancements in microprocessor technology have increased power efficiency, effectively reducing power consumption requirements. In combination, these developments have sparked interest in the engineering community to develop more and more applications that utilize energy harvesting for power. The approach here described aims to designing and manufacturing an innovative easy-to-use and general-purpose device for energy harvesting in general purpose shoes. The novelty of this device is the integration of polymer and ceramic piezomaterials accomplished by injection molding. In this spirit, this paper examines different devices that can be built into a shoe, (where excess energy is readily harvested) and used for generating electrical power while walking. A Main purpose is the development of an indoor localization system embedded in shoes that periodically broadcasts a digital RFID as the bearer walks. Results are encouraging and real life test are conducted on the first series of prototypes.


2021 ◽  
Vol 11 (22) ◽  
pp. 10686
Author(s):  
Syeda Amna Sohail ◽  
Faiza Allah Bukhsh ◽  
Maurice van Keulen

Healthcare providers are legally bound to ensure the privacy preservation of healthcare metadata. Usually, privacy concerning research focuses on providing technical and inter-/intra-organizational solutions in a fragmented manner. In this wake, an overarching evaluation of the fundamental (technical, organizational, and third-party) privacy-preserving measures in healthcare metadata handling is missing. Thus, this research work provides a multilevel privacy assurance evaluation of privacy-preserving measures of the Dutch healthcare metadata landscape. The normative and empirical evaluation comprises the content analysis and process mining discovery and conformance checking techniques using real-world healthcare datasets. For clarity, we illustrate our evaluation findings using conceptual modeling frameworks, namely e3-value modeling and REA ontology. The conceptual modeling frameworks highlight the financial aspect of metadata share with a clear description of vital stakeholders, their mutual interactions, and respective exchange of information resources. The frameworks are further verified using experts’ opinions. Based on our empirical and normative evaluations, we provide the multilevel privacy assurance evaluation with a level of privacy increase and decrease. Furthermore, we verify that the privacy utility trade-off is crucial in shaping privacy increase/decrease because data utility in healthcare is vital for efficient, effective healthcare services and the financial facilitation of healthcare enterprises.


Author(s):  
Ana Iglesias ◽  
Belén Ruiz-Mezcua ◽  
Juan Francisco López ◽  
Diego Carrero Figueroa

This chapter explores new communication technologies and methods for avoiding accessibility and communication barriers in the educational environment. It is focused on providing real-time captions so students with hearing disabilities and foreign students, among others, could participate in an inclusive way in and outside the classroom. The inclusive proposals are based on the APEINTA educational project, which aims for accessible education for all. The research work proposes the use of mobile devices for teacher and students in order to provide more flexibility using the APEINTA real-time captioning service. This allows using this service from anywhere and at anytime, not only in the classroom.


Sign in / Sign up

Export Citation Format

Share Document