Energy Harvesting for Smart Shoes: A Real Life Application

Author(s):  
Emanuele Frontoni ◽  
Adriano Mancini ◽  
Primo Zingaretti ◽  
Andrea Gatto

Advanced technical developments have increased the efficiency of devices in capturing trace amounts of energy from the environment (such as from human movements) and transforming them into electrical energy (e.g., to instantly charge mobile devices). In addition, advancements in microprocessor technology have increased power efficiency, effectively reducing power consumption requirements. In combination, these developments have sparked interest in the engineering community to develop more and more applications that utilize energy harvesting for power. The approach here described aims to designing and manufacturing an innovative easy-to-use and general-purpose device for energy harvesting in general purpose shoes. The novelty of this device is the integration of polymer and ceramic piezomaterials accomplished by injection molding. In this spirit, this paper examines different devices that can be built into a shoe, (where excess energy is readily harvested) and used for generating electrical power while walking. A Main purpose is the development of an indoor localization system embedded in shoes that periodically broadcasts a digital RFID as the bearer walks. Results are encouraging and real life test are conducted on the first series of prototypes.

2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


2015 ◽  
Vol 25 (12) ◽  
pp. 1550171 ◽  
Author(s):  
Mattia Coccolo ◽  
Grzegorz Litak ◽  
Jesús M. Seoane ◽  
Miguel A. F. Sanjuán

In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.


Author(s):  
Wander G. R. Vieira ◽  
Fred Nitzsche ◽  
Carlos De Marqui

Converting aeroelastic vibrations into electricity for low-power generation has received growing attention over the past few years. Helicopter blades with embedded piezoelectric elements can provide electrical energy to power small electronic components. In this paper, the non-linear modeling and analysis of an electromechanically coupled cantilevered helicopter blade is presented for piezoelectric energy harvesting. A resistive load is considered in the electrical domain of the problem in order to quantify the electrical power output. The non-linear electromechanical model is derived based on the Variational-Asymptotic Method (VAM). The coupled non-linear rotary system is solved in the time-domain. A generalized-α integration method is used to guarantee numerical stability, adding numerical damping at high frequencies. The electromechanical behavior of the coupled rotating blade is investigated for increasing rotating speeds (stiffening effect).


2018 ◽  
Vol 17 (2) ◽  
pp. 117
Author(s):  
Tatjana Nikolić ◽  
Mile Stojčev ◽  
Goran Nikolić ◽  
Goran Jovanović

Batteries are the main source of energy for low-power electronics such as micro-electro mechanical systems (MEMS), wireless sensor networks, embedded devices for remote sensing and control, etc. With the limited capacity of finite power sources and the need for supplying energy for the lifetime of a system/device there is a requirement for self-powered devices. Using conventional batteries is not always good design solution because batteries require human intervention to replace them (very often in hard-accessible and harsh-environmental conditions). Therefore, acquiring the electrical power, by using an alternative source of energy that is needed to operate these devices is a major concern. The process of extracting energy from the surrounding environment and converting it into consumable electrical energy is known as energy harvesting or power scavenging. The energy harvesting sources can be used to increase the lifetime and capability of the devices by either replacing or augmenting the battery usage. There are various forms of energy that can be scavenged, like solar, mechanical, thermal, and electromagnetic. Nowadays, there is a big interest in the field of research related to energy harvesting. This paper represents a survey for identifying the sources of energy harvesting and describes the basic operation of principles of the most common energy harvester. As first, we present, in short, the conversion principles of single energy source harvesting systems and point to their benefits and limitations in their usage. After that, hybrid structures of energy harvesters which simultaneously combine scavenged power from different ambient sources (solar, thermoelectric, electromagnetic), with aim to support higher load at the output, are considered.


2020 ◽  
Vol 1 (2) ◽  
pp. 60-70
Author(s):  
Fouad Alhajj Hassan

The usage of electrical energy is still increasing around the world, and extending to cover more electrical power based applications. This will lead to more atmosphere changes on the globe in the next decades. Thus, renewable energy must be used in an efficient way to reduce the negative effects of these power generators. The location of the wind farm plays a big role in determining the efficiency of the output power. The aim of this research is to study which turbine configuration suits best for a specific location, taking into consideration all the possible constraints. In order to reach our goal, three different turbines configurations are studied with least possible uncertainties. The optimal configuration is when the wind shear is minimal at the height of the hub, the wake effect is negligible and the capacity factor is maximal (the economical part is not included). In this paper Sorochi Gory (located in Tatarstan, Russia) wind farm site will be explained, analysed. The power exponent and capacity factor will be calculated, and the results are displayed. Doi: 10.28991/HEF-2020-01-02-02 Full Text: PDF


2013 ◽  
Vol 394 ◽  
pp. 482-486
Author(s):  
Yee Ming Chen ◽  
Yi Jen Peng

Extracting an electrical energy from various environmental sources, called energy harvesting (or energyscavenging), has been an issue and attracting researchers attention in energy replenish networks.Thermal energy harvesting holds a promising future for generatinga small amount of electrical power to drive partial circuits in wirelessly communicatingelectronics devices. Reducing power consumption has also become a major challenge in wireless body area network (WBAN). The reliability ofthe WBAN is greatly dependent on the life span of theenergyaware routing in networks.In this paper presented a fuzzy controller for thermal energyaware routing in WBAN.The paper concludes with performance analysis of the thermal energy harvesting aware routing, comparison of fuzzy and other traditional energy management techniques,while also looking at open research areas of thermoelectric harvesting and management for wireless body area networks.


2018 ◽  
Vol 37 (4) ◽  
pp. 1015-1029 ◽  
Author(s):  
Ming Yuan ◽  
Ziping Cao ◽  
Jun Luo ◽  
Roger Ohayon

In this study, a multifunctional acoustic metastructure is proposed to achieve both effective low-frequency sound isolation and acoustic energy harvesting. A metallic substrate with proof mass is adopted to generate the local resonant phenomenon for the purpose of overcoming the drawbacks of the previous rubber film-based acoustic metastructure; the latter usually requires an elaborate tension process. Numerical simulations show that the proposed structure exhibits excellent noise isolation performance in the low-frequency band. Meanwhile, the incident sound energy can be converted into electrical energy with the help of an added piezoelectric patch. Numerical simulation results indicate that the harvested energy can reach the mW level. The parameters’ influence on the metastructure’s vibro-acoustic and energy harvesting performance are discussed in detail. An optimized configuration is selected and used for experimental study. It is demonstrated that 0.21 mW electrical power at 155 Hz can be harvested by the proposed metastructure under 114 dB sound pressure excitation.


Author(s):  
Francesco Braghin ◽  
Simone Cinquemani ◽  
Ferruccio Resta

Energy harvesting, sometimes referred to as “power scavenging” or “energy extraction”, can be defined as “converting ambient energies such as vibration, temperature, light, RF energy, etc. to usable electrical energy by using energy conversion materials or structures, and subsequent storage of the electrical energy for powering electric devices”. There has been a significant increase in the research on vibration-based energy harvesting in recent years. In this contest magnetostrictive devices are considered a promising technology. The Villari effect, also known as the inverse magnetomechanical effect, is the change in magnetization that a magnetostrictive material undergoes when subjected to an applied uniaxial stress. This effect pertains to the transduction of energy from the elastic to the magnetic state and is inverse of Joule magnetostriction. Furthermore, the Villari effect exhibits many of the attributes of the direct magnetostrictive effect since its physical origin lies in magnetoelastic coupling. Transducers utilizing the Villari effect consist of a coil wound on a core of magnetostrictive material. In this paper, a linear magnetomechanical coupling model is developed to analytically calculate the potential electrical power such transducers can generate when subjected to applied harmonic mechanical vibration. Theoretical results are confirmed by experimental tests on two different magnetostrictive devices.


Author(s):  
Tian-Bing Xu ◽  
Emilie J. Siochi ◽  
Jin Ho Kang ◽  
Lei Zuo ◽  
Wanlu Zhou ◽  
...  

In this paper, we report the study of a “33” longitudinal mode, piezoelectric PZT ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for broader bandwidth high-performance piezoelectric energy harvesting transducers (PEHTs). The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm × 7.0 mm × 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficients (EPC, deff) of the PZT-stack is about 1 × 105 pC/N at off-resonance frequencies and 1.39 × 106 pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The EPC do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2,479 Hz with a dynamic force of 11.6 Nrms, and 7.6 mW of electrical power was generated at a frequency of 2,114 Hz with 1 Nrms dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 Nrms dynamic force. A theoretical model of energy harvesting for the PZT-Stack was established. The modeled results matched well with experimental measurements. This study demonstrated that structures with high EPC enable PEHTs to harvest more electrical energy from mechanical vibrations or motions, suggesting an effective design for high-performance low-profile PEHTs with potential applications in military, aerospace, and portable electronics. In addition, this study provides a route for using piezoelectric multilayer stacks for active or semi-active adaptive control to damp, harvest or transform unwanted vibrations into useful electrical energy.


Sign in / Sign up

Export Citation Format

Share Document