Odd Harmonious Labeling of Pn ⊵ C4 and Pn ⊵ D2(C4)
A graph <em>G</em> with <em>q</em> edges is said to be odd harmonious if there exists an injection <em>f</em>:<em>V</em>(<em>G</em>) → ℤ<sub>2q</sub> so that the induced function <em>f</em>*:<em>E</em>(<em>G</em>)→ {1,3,...,2<em>q</em>-1} defined by <em>f</em>*(<em>uv</em>)=<em>f</em>(<em>u</em>)+<em>f</em>(<em>v</em>) is a bijection.<p>Here we show that graphs constructed by edge comb product of path <em>P</em><sub>n</sub> and cycle on four vertices <em>C</em><sub>4</sub> or shadow of cycle of order four <em>D</em><sub>2</sub>(<em>C</em><sub>4</sub>) are odd harmonious.</p>
2019 ◽
Vol 8
(3)
◽
pp. 5795-5802
◽
Keyword(s):
2009 ◽
Vol 223
(2)
◽
pp. 543-551
◽
2004 ◽
Vol 02
(01)
◽
pp. 71-85
◽
2019 ◽
Vol 23
(1)
◽
pp. 12-15
◽
Keyword(s):