Methods for analysis of and ways to minimize energy providers’ technology and technical risks

Author(s):  
Aleksandra Sukhova ◽  
Elena Elizareva

Objective: Identifying an accurate quantitative risk assessment. FEC (Fuel and Energy Complex) plants are a high-risk area as they may cause manmade disasters, various accidents, pose a threat to human life and environment. In addition, the Russian energy industry is noted for its high complexity and social responsibility. Its specific feature is that it is not always possible to make an accurate quantitative risk assessment reasonably in advance and its degree determination methods are not well enough developed. In view of the above, there are some difficulties in minimizing the risks and estimating risk management costs. There has been a recent trend in improved current legislation on industrial safety and Rostechnadzor (Federal Environmental, Industrial and Nuclear Supervision Service of Russia) oversight and supervision activity practice toward implementing a risk-based approach using the risk analysis methods. It allows optimizing the methods and frequency of inspections made by regulatory bodies depending on the risk level of facilities supervised. Methods: The (accident) risk analysis is performed as a certain scientific justification set forth using qualitative and quantitative analysis of a potential accident likelihood, consequences of its occurrence, and identification of the weakest points in the engineering system or complex. Using fault tree analysis, this article identifies hazards and assesses the high-pressure gas pipeline loss of containment risk, one of the events possible for an energy provider in operation. Results: Based on the risk analysis, there has been a proposal to replace gland seal valves with bellows seal valves noted for their optimum relationship between the unit reliability, cost and sophistication level. In case the facilities with gland seal valves remain in operation, improved production process monitoring is recommended using gas leak detectors and automatic interlocking devices. Practical importance: The measures proposed will allow minimizing the gas pipeline loss of containment risk.

Author(s):  
Wenxing Feng ◽  
Xiaoqiang Xiang ◽  
Guangming Jia ◽  
Lianshuang Dai ◽  
Yulei Gu ◽  
...  

The oil and gas pipeline companies in China are facing unprecedented opportunities and challenges because of China’s increasing demand for oil and gas energy that is attributed to rapid economic and social development. Limitation of land resource and the fast urbanization lead to a determinate result that many pipelines have to go through or be adjacent to highly populated areas such as cities or towns. The increasing Chinese government regulation, and public concerns about industrial safety and environmental protection push the pipeline companies to enhance the safety, health and environmental protection management. In recent years, PetroChina Pipeline Company (PPC) pays a lot of attention and effort to improve employees and public safety around the pipeline facilities. A comprehensive, integrated HSE management system is continuously improved and effectively implemented in PPC. PPC conducts hazard identification, risk assessment, risk control and mitigation, risk monitoring. For the oil and gas stations in highly populated area or with numerous employees, PPC carries out quantitative risk assessment (QRA) to evaluate and manage the population risk. To make the assessment, “Guidelines for quantitative risk assessments” (purple book) published by Committee for the Prevention of Disasters of Netherlands is used along with a software package. The basic principles, process, and methods of QRA technology are introduced in this article. The process is to identify the station hazards, determinate the failure scenarios of the facilities, estimate the possibilities of leakage failures, calculate the consequences of failures and damages to population, demonstrate the individual risk and social risk, and evaluate whether the risk is acceptable. The process may involve the mathematical modeling of fluid and gas spill, dispersion, fire and explosion. One QRA case in an oil pipeline station is described in this article to illustrate the application process and discuss several key issues in the assessment. Using QRA technique, about 20 stations have been evaluated in PPC. On the basis of the results, managers have taken prevention and mitigation plans to control the risk. QRAs in the pipeline station can provide a quantitative basis and valuable reference for the company’s decision-making and land use planning. Also, QRA can play a role to make a better relationship between the pipeline companies and the local regulator and public. Finally, this article delivers limitations of QRA in Chinese pipeline stations and discusses issues of the solutions.


2020 ◽  
Vol 16 (3) ◽  
pp. 80-99
Author(s):  
Junfei Chen ◽  
Cong Yu

The interaction of human activity, climate change, and urbanization gives rise to more frequent urban stormwater disasters, which causes great economic loss in cities. This article presents a prototype of an interactive WebGIS system for urban stormwater risk analysis. The system has a Browse/Server(B/S) structure and uses WebGIS techniques for prototype development. It is based on the theory of disaster system and Cloud matter-element model for risk assessment. The risk results are immediately generated and visualized interactively by rendering risk maps. Finally, two urban stormwater events in Nanjing in 2015 and 2016 were selected to verify the accuracy of the risk assessment. The results show that the intelligence system can effectively assess the risk level and identify the spatial-temporal distribution of urban stormwater risk in Nanjing, China.


Author(s):  
Sanjeev Puri

Risk management for software projects is intended to minimize the chances of unexpected events, or more specifically to keep all possible outcomes under tight management control with making judgments about how risk events are to be treated, valued, compared and combined. It is necessary to have some well-founded infrastructure for the identification of software security risks as well as the application of appropriate controls to manage risks. To be truly beneficial, the risk analysis framework must be granular and practical enough to produce a customizable roadmap of which problems exist, and to rank them in order of severity. The paper a risk assessment framework for a precise, unambiguous and efficient risk analysis with qualitative risk analysis methodologies and tree based techniques by exploiting the synthesis of risk analysis methods with object-oriented modeling, semi-formal methods and tools, in order to improve the security risk analysis of software and security policy implementation of security-cri tical systems to reduce risk levels and optimizequality instructions.


2019 ◽  
Vol 6 ◽  
pp. 17-27
Author(s):  
Tsvetelina Simeonova

The aim of the present work is to develop a methodology for conducting exercises for analysis, assessment and management of risk, using a web based tool by identifying and analyzing the risk of occurrence of a dangerous event through the fault tree method. As a result, a framework is presented according to the proposed methodology applicable to the students' training in risk analysis, evaluation and management, and according to accepted assumptions. Approaches for qualitative and quantitative risk assessment are presented at the assumed value of the damages. In addition, a methodology for risk analysis, assessment and management applicable to student training on risk analysis and management has been developed and proposed.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 219
Author(s):  
Jongsung Kim ◽  
Donghyun Kim ◽  
Myungjin Lee ◽  
Heechan Han ◽  
Hung Soo Kim

For risk assessment, two methods, quantitative risk assessment and qualitative risk assessment, are used. In this study, we identified the regional risk level for a disaster-prevention plan for an overall area at the national level using qualitative risk assessment. To overcome the limitations of previous studies, a heavy rain damage risk index (HDRI) was proposed by clarifying the framework and using the indicator selection principle. Using historical damage data, we also carried out hierarchical cluster analysis to identify the major damage types that were not considered in previous risk-assessment studies. The result of the risk-level analysis revealed that risk levels are relatively high in some cities in South Korea where heavy rain damage occurs frequently or is severe. Five causes of damage were derived from this study—A: landslides, B: river inundation, C: poor drainage in arable areas, D: rapid water velocity, and E: inundation in urban lowlands. Finally, a prevention project was proposed considering regional risk level and damage type in this study. Our results can be used when macroscopically planning mid- to long-term disaster prevention projects.


Author(s):  
Sri Aminatun ◽  
Yunalia Muntafi

<em>Located on a hilly topography with a steep slope, highlighted the importance of settlement arrangement based on a landslide risk assessment in Girirejo village, Imogiri, Bantul, Yogyakarta. This study aims to map landslides risk, identify houses in the landslide risk zone, and provide recommendations for settlement arrangements. The research begins with observation, interviews, and focus group discussion. Disaster risk mapping and analysis were carried out through weighting method based on Perka BNPB No.2 of 2012 concerning General Guidelines for Disaster Risk Assessment and a formula with parameters of hazard, vulnerability, and capacity. Results showed the medium to a high-level of landslide risk was dominated by northern and eastern parts of Girirejo (21 families in red-zone, 23 families in yellow-zone), while western and southern regions had a low landslide risk level. This research also provided a formulation of settlements concept for medium and high-risk areas by considering landslides risk analysis study.</em>


2020 ◽  
Vol 38 (3B) ◽  
pp. 204-211
Author(s):  
Azhar M. Haleem

Chemicals are used daily at the university, by its students or staff so it’s necessary to develop a chemical management system to protect their workers and students from accidents caused by exposure to chemicals of various forms, the present study explains the methodology for assessing the health effects and risks of exposure to chemicals in the chemical stores of University of Technology (UOT) by using semi- quantitative risk assessment technique depends on a descriptive analytical approach, by collecting the requested information for seven main stores within the university by questionnaire form included inquiries about personal information about employees, level of education and years of experience, it also included inquiries about chemical stores and storage volumes, at first identified the exposed people, detected high demand chemicals, subsequently identified the chemical hazardous factors, exposure rate and risk level of each substance, ultimately the risk was identified for 41 chemicals among them four strong acids, hydrochloric, sulfuric, nitric and chromic with high exposure rate  benzene and xylene that have high risk level, from results of chemical survey can be conclude 71% of the total chemicals classified as high to moderate risk level, so  the study recommends the continuity of the periodic assessment of chemical hazards within the stores of university, include laboratories in assessment procedures, providing of personal safety equipment.


Sign in / Sign up

Export Citation Format

Share Document