scholarly journals The Kasterlee Formation and its relation with the Diest and Mol Formations in the Belgian Campine

2020 ◽  
Vol 23 (3-4) ◽  
pp. xxx-xxx ◽  
Author(s):  
Noël VANDENBERGHE ◽  
Laurent WOUTERS ◽  
Marco SCHILTZ ◽  
Koen BEERTEN ◽  
Isaac BERWOUTS ◽  
...  

Stratigraphic analysis of cored and geophysically logged boreholes in the Kasterlee-Geel-Retie-Mol-Dessel area of the Belgian Campine has established the presence of two lithostratigraphic units between the classical Diest and Mol Formations, geometrically related to the type Kasterlee Sand occurring west of the Kasterlee village and the study area. A lower ‘clayey Kasterlee’ unit, equivalent to the lithology occurring at the top of the Beerzel and Heist-op-den-Berg hills, systematically occurs to the east of the Kasterlee village. An overlying unit has a pale colour making it lithostratigraphically comparable to Mol Sand although its fine grain size, traces of glauconite and geometrical position have traditionally led stratigraphers to consider it as a lateral variety of the type Kasterlee Sand; it has been named the ‘lower Mol’ or ‘Kasterlee-sensu-Gulinck’ unit in this study. In the present analysis, the greenish glauconitic Kasterlee Sand in its hilly stratotype area evolves eastwards into the lower ‘clayey Kasterlee’ unit and possibly also into an overlying ‘lower Mol’ or ‘Kasterlee-sensu-Gulinck’ unit, although it is equally possible that the latter unit has an erosive contact and therefore is stratigraphically slightly younger than the type Kasterlee Sand west of the Kasterlee village. A lateral extension of this detailed stratigraphic succession into the faulted zone of east Limburg is proposed.

Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
Yihong Xian ◽  
Weijun He ◽  
Wenhuan Chen ◽  
Zejun Chen ◽  
Bing Jiang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


2020 ◽  
Vol 39 (1) ◽  
pp. 595-598
Author(s):  
Cui Chaopeng ◽  
Zhu Xiangwei ◽  
Li Qiang ◽  
Zhang Min ◽  
Zhu Guangping

AbstractThe Mo/ZrO2 electrode was prepared by combining hydrothermal synthesis with powder metallurgy, and this new electrode material has a totally different microstructure from the conventional electrode. The grain size of the new electrode was fine, and the size of ZrO2 in the alloy reached 200 nm. According to the results, the Mo–ZrO2 electrode has better performance, because the erosion occurs along the grain boundaries. Meanwhile, the new electrode, based on its fine grain, can effectively improve the corrosion resistance of the electrode.


2013 ◽  
Vol 347-350 ◽  
pp. 1171-1175 ◽  
Author(s):  
Bin Wang ◽  
Hong Mei Hu ◽  
Cui Zhou

The transverse properties were inferior to the longitudinal properties for the existence of banded structure in 20G steel. In order to eliminate the banded structure and improve the transverse performance of 20G steel, different heat treatment processes were adopted. The results showed that conventional normalizing could reduce the banded structure and refine the grain sizes. When 20G was heated with 10°C/min heating rated and then held at 920°C for 2h, the banded structure in the steel was almost eliminated and the microstructure was homogeneous with fine grain size, the strength increased by 14%. The non-metallic inclusion and carbide in the microstructure leaded to stress concentration and separation with the base metal. To some extent, heat treatment can improve the distribution and form of non-metallic inclusions.


2008 ◽  
Vol 22 (18n19) ◽  
pp. 2833-2939 ◽  
Author(s):  
S. M. FATEMI-VARZANEH ◽  
A. ZAREI-HANZAKI ◽  
M. HAGHSHENAS

This work conducted to investigate the effects of accumulative roll bonding (ARB) method on achieving the ultra-fine grain microstructure in AZ31 alloy. Accordingly, a number of ARB routes at 400°C, applying thickness reductions per pass of 35%, 55%, and 85% were performed. The results indicate that both the final grain size and the degree of bonding have been dictated by the thickness reduction per pass. The larger pass reductions promote a higher degree of bonding. Increasing the total strain stimulates the formation of a more homogeneous ultra fine grain microstructure.


MRS Advances ◽  
2016 ◽  
Vol 1 (35) ◽  
pp. 2465-2470
Author(s):  
Thomas Winter ◽  
Richard Hoffman ◽  
Chaitanya S. Deo

ABSTRACTUnder high burnup UO2 fuel pellets can experience high burnup structure (HBS) at the rim also known as rim effect. The HBS is exceptionally porous with fine grain sizes. HBS increases the swelling further than it would have achieved at a larger grain size. A theoretical swelling model is used in conjunction with a grain subdivision simulation to calculate the swelling of UO2. In UO2 the nucleation sites are at vacancies and the bubbles are concentrated at grain boundaries. Vacancies are created due to irradiation and gas diffusion is dependent on vacancy migration. In addition to intragranular bubbles, there are intergranular bubbles at the grain boundaries. Over time as intragranular bubbles and gas atoms accumulate on the grain boundaries, the intergranular bubbles grow and cover the grain faces. Eventually they grow into voids and interconnect along the grain boundaries, which can lead to fission gas release when the interconnection reaches the surface. This is known as the saturation point. While the swelling model used does not originally incorporate a changing grain size, the simulation allows for more accurate swelling calculations by introducing a fractional HBS based on the temperature and burnup of the pellet. The fractional HBS is introduced with a varying grain size. Our simulations determine the level of swelling and saturation as a function of burnup by combining an independent model and simulation to obtain a more comprehensive model.


1993 ◽  
Vol 40 (9) ◽  
pp. 877-880
Author(s):  
Akihiro Makino ◽  
Yutaka Yamamoto
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document