scholarly journals Study on the erosion of Mo/ZrO2 alloys in glass melting process

2020 ◽  
Vol 39 (1) ◽  
pp. 595-598
Author(s):  
Cui Chaopeng ◽  
Zhu Xiangwei ◽  
Li Qiang ◽  
Zhang Min ◽  
Zhu Guangping

AbstractThe Mo/ZrO2 electrode was prepared by combining hydrothermal synthesis with powder metallurgy, and this new electrode material has a totally different microstructure from the conventional electrode. The grain size of the new electrode was fine, and the size of ZrO2 in the alloy reached 200 nm. According to the results, the Mo–ZrO2 electrode has better performance, because the erosion occurs along the grain boundaries. Meanwhile, the new electrode, based on its fine grain, can effectively improve the corrosion resistance of the electrode.

MRS Advances ◽  
2016 ◽  
Vol 1 (35) ◽  
pp. 2465-2470
Author(s):  
Thomas Winter ◽  
Richard Hoffman ◽  
Chaitanya S. Deo

ABSTRACTUnder high burnup UO2 fuel pellets can experience high burnup structure (HBS) at the rim also known as rim effect. The HBS is exceptionally porous with fine grain sizes. HBS increases the swelling further than it would have achieved at a larger grain size. A theoretical swelling model is used in conjunction with a grain subdivision simulation to calculate the swelling of UO2. In UO2 the nucleation sites are at vacancies and the bubbles are concentrated at grain boundaries. Vacancies are created due to irradiation and gas diffusion is dependent on vacancy migration. In addition to intragranular bubbles, there are intergranular bubbles at the grain boundaries. Over time as intragranular bubbles and gas atoms accumulate on the grain boundaries, the intergranular bubbles grow and cover the grain faces. Eventually they grow into voids and interconnect along the grain boundaries, which can lead to fission gas release when the interconnection reaches the surface. This is known as the saturation point. While the swelling model used does not originally incorporate a changing grain size, the simulation allows for more accurate swelling calculations by introducing a fractional HBS based on the temperature and burnup of the pellet. The fractional HBS is introduced with a varying grain size. Our simulations determine the level of swelling and saturation as a function of burnup by combining an independent model and simulation to obtain a more comprehensive model.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7199
Author(s):  
Hyunbin Nam ◽  
Jeongwon Kim ◽  
Namkyu Kim ◽  
Sangwoo Song ◽  
Youngsang Na ◽  
...  

In this study, the carburization characteristics of cast and cold-rolled CoCrFeMnNi high-entropy alloys (HEAs) with various grain sizes were investigated. All specimens were prepared by vacuum carburization at 940 °C for 8 h. The carburized/diffused layer was mainly composed of face-centered cubic structures and Cr7C3 carbide precipitates. The carburized/diffused layer of the cold-rolled specimen with a fine grain size (~1 μm) was thicker (~400 μm) than that of the carburized cast specimen (~200 μm) with a coarse grain size (~1.1 mm). In all specimens, the carbides were formed primarily through grain boundaries, and their distribution varied with the grain sizes of the specimens. However, the carbide precipitates of the cast specimen were formed primarily at the grain boundaries and were unequally distributed in the specific grains. Owing to the non-uniform formation of carbides in the carburized cast specimen, the areas in the diffused layer exhibited various carbide densities and hardness distributions. Therefore, to improve the carburization efficiency of equiatomic CoCrFeMnNi HEAs, it is necessary to refine the grain sizes.


Alloy Digest ◽  
1967 ◽  
Vol 16 (7) ◽  

Abstract SG-100 is a pure nickel strip. It is ductile and has good mechanical properties with a uniform, fine grain size. It possesses excellent corrosion resistance and interesting electrical and magnetic properties. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming and heat treating. Filing Code: Ni-125. Producer or source: Sherritt Gordon Mines Limited.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 849 ◽  
Author(s):  
Praveen Sathiyamoorthi ◽  
Jae Bae ◽  
Peyman Asghari-Rad ◽  
Jeong Park ◽  
Jung Kim ◽  
...  

Annealing of severely plastic deformed materials is expected to produce a good combination of strength and ductility, which has been widely demonstrated in conventional materials. In the present study, high-pressure torsion processed CoCrNi medium entropy alloy consisting of a single face-centered cubic (FCC) phase with a grain size of ~50 nm was subjected to different annealing conditions, and its effect on microstructure and mechanical behavior was investigated. The annealing of high-pressure torsion processed CoCrNi alloy exhibits partial recrystallization and near full recrystallization based on the annealing temperature and time. The samples annealed at 700 °C for 2 min exhibit very fine grain size, a high fraction of low angle grain boundaries, and high kernel average misorientation value, indicating partially recrystallized microstructure. The samples annealed for a longer duration (>2 min) exhibit relatively larger grain size, a low fraction of low angle grain boundaries, and low kernel average misorientation value, indicating nearly full recrystallized microstructure. The annealed samples with different microstructures significantly influence the uniform elongation, tensile strength, and work hardening rate. The sample annealed at 700 °C for 15 min exhibits a remarkable combination of tensile strength (~1090 MPa) and strain to failure (~41%).


2011 ◽  
Vol 399-401 ◽  
pp. 1951-1957
Author(s):  
Xian Liang Zhou ◽  
Min Zhu ◽  
Xiao Zhen Hua ◽  
Zhi Guo Ye ◽  
Xia Cui ◽  
...  

Different phase compositions and microstructures of oxide scales were formed on the surface of SS400 hot rolled alloys by employing various heat treatment processes. Cyclic wet-dry immersion corrosion test, electrochemical impedance spectroscopy were used to investigate the corrosion resistance of strips with scales fabricated by different heat treatment processes. The results reveal that difference in the corrosion resistance of the various scales is due to the difference in the grain size of Fe3O4phase. Furthermore, the difference in the corrosion resistance of different oxide phases, exhibited by various scales, also render the strips to give various corrosion behaviors. It is surmised that the strip with oxide scale, which consist of a small mount of the outer layer Fe2O3phase distributed continuously and a large quantity of the inner layer Fe3O4phase with the fine grain size, and possess nice compactness, continuity, integrity in the morphology structure, has the best corrosion resistance.


2012 ◽  
Vol 9 (3) ◽  
pp. 541-547
Author(s):  
Baghdad Science Journal

In this study, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has been prepared as bioceramic material with biological specifications useful to used for orthopedic and dental implant applications. Wet chemical processing seems to form the fine grain size and uniform characteristic nanocrystalline materials by the interstice factors controlling which affected the grain size and crystallinity in order to give good mechanical and/or constituent properties similar as natural bone. Fluorinated hydroxyapatite [4-6 wt% F, (FHA, Ca10(PO4)6(OH)2–Fx] was developed in new method for its posses to increased strength and to give higher corrosion resistance in biofluids than pure HAP moreover reduces the risk of dental caries. The phase's and functional groups characterizations XRD & FTIR reveled the purity of the product and its free of other phases, while the morphology tests showed the compound homogeneity as fluoride interpenetrated in the compound lattice net.


Metalurgi ◽  
2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Vinda Puspasari ◽  
I. Nyoman Gede P. A. ◽  
Efendi Mabruri ◽  
Satrio Herbirowo ◽  
Edy Priyanto Utomo

Al-Mg-Si alloys (6xxx) has been widely used as structural materials in building and vehicles because of its excellent strength and corrosion resistance. The improvement of fine grain microstructure which can increase mechanical and physical properties become an interesting field in recent research.. Equal channel angular press is the most promising method to apply severe plastic deformation (SPD) which can produce ultra-fine grain in the bulk material without residual porosity. This study presents some experiments results on the effect of ECAP number of passes variation to the hardness, microstructure, and corrosion behaviour of Al 6061 alloys. The samples were annealed in the furnace with argon gas environment at 530°C for 4 hours and then immersed in liquid nitrogen for 5 minutes before ECAP process. The ECAP process was done with Bc route using dies with 120° of internal channel angle and pass variation of 1, 2, 3, and 4. The optimum hardness is 107.58 HRB in Al 6061 samples with 3 passes of ECAP. The increasing ECAP number of passes leads to a significant grain size reduction from 0 way pass, the grain size is around 10 µm, while for a 4 way pass, the grain size is around 2.5 µm. The corrosion resistance of Al 6061 alloys increased with the increasing number of passes in ECAP process.


2007 ◽  
Vol 336-338 ◽  
pp. 545-548
Author(s):  
Y. Xiong ◽  
Zheng Yi Fu ◽  
Hang Wang

Translucent AlN ceramics were fabricated using spark plasma sintering (SPS) technique with 3wt% CaF2 as sintering additive. The samples achieved 52.4% maximum transmittance in medium IR region after 10 min holding time by spark plasma sintering at 1800°C and 30 MPa pressure in N2. The results from XRD, SEM, TEM and EDX showed that the sintered bodies were densely compacted and highly pure with fine grain size and uniform microstructures. No secondary phases were observed at the grain boundaries and triple grain junctions, which guaranteed good optical property of the sintered bodies.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
Ernest L. Hall ◽  
Lee E. Rumaner ◽  
Mark G. Benz

The intermetallic compound Nb3Sn is a type-II superconductor of interest because it has high values of critical current density Jc in high magnetic fields. One method of forming this compound involves diffusion of Sn into Nb foil containing small amounts of Zr and O. In order to maintain high values of Jc, it is important to keep the grain size in the Nb3Sn as small as possible, since the grain boundaries act as flux-pinning sites. It has been known for many years that Zr and O were essential to grain size control in this process. In previous work, we have shown that (a) the Sn is transported to the Nb3Sn/Nb interface by liquid diffusion along grain boundaries; (b) the Zr and O form small ZrO2 particles in the Nb3Sn grains; and (c) many very small Nb3Sn grains nucleate from a single Nb grain at the reaction interface. In this paper we report the results of detailed studies of the Nb3Sn/Nb3Sn, Nb3Sn/Nb, and Nb3Sn/ZrO2 interfaces.


Sign in / Sign up

Export Citation Format

Share Document