scholarly journals Analisis Kestabilan dan Kontrol Optimal Model Matematika Dinamika Pelanggan Berdasarkan Kebijakan Pemasaran

Author(s):  
Muhammad Iqbal Abdi Farchan ◽  
Fatmawati Fatmawati ◽  
Cicik Alfiniyah

Customer dynamics include the exchange of information and ongoing transactions between customers and the organization. This process has an important role in the company to run its business, so that the number of customers increase. To achieve this, many things are done by the company. One of the strategies is product advertising by word of mouth. The purpose of this thesis is to analyze the stability of equilibrium point and to apply the optimal control word of mouth advertising on mathematics model of the customer dynamics based on marketing policy. Mathematics model of the customer dynamics based on marketing policy without control has two equilibrium points, namely non – endemic equilibrium (E0) and endemic equilibrium (E1). Local stability of equilibrium and the existence of endemic equilibrium depends on basic reproduction number (R0). The non – endemic equilibrium tend to asymptotically stable if R0 < 1.  The problem of optimal control is solved by Pontryagin’s Maximum Principle. The simulation results show that the total number of referral and regular customer populations that are given control in the form of word of mouth advertising efforts at the end of the observation are 312 and 18470 with the control effort costs occurred in 1798364.63. While the total number of referral and regular customer populations that are not given control in the form of word of mouth advertising efforts at the end observation are 241 and 17260. Based on these results show that word of mouth advertising efforts have an effect to increase the number of referral and regular customer in accordance with the aim of providing optimal control.

2018 ◽  
Vol 330 ◽  
pp. 42-55 ◽  
Author(s):  
S. Rosa ◽  
P. Rebelo ◽  
C.M. Silva ◽  
H. Alves ◽  
P.G. Carvalho

2014 ◽  
Vol 9 (2) ◽  
pp. 52
Author(s):  
Roni Tri Putra ◽  
Sukatik - ◽  
Sri Nita ◽  
Yandraini Yunida

In this paper, it will be studied global stability endemic of equilibrium points of  a SEIR model with infectious force in latent, infected and immune period. From the model it will be found investigated the existence and its stability of points its equilibrium. The global stability of equilibrium points is depending on the value of the basic reproduction number  If   there is a unique endemic equilibrium which is globally asymptotically stable.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 336
Author(s):  
Askhat Diveev ◽  
Elizaveta Shmalko

This article presents a study devoted to the emerging method of synthesized optimal control. This is a new type of control based on changing the position of a stable equilibrium point. The object stabilization system forces the object to move towards the equilibrium point, and by changing its position over time, it is possible to bring the object to the desired terminal state with the optimal value of the quality criterion. The implementation of such control requires the construction of two control contours. The first contour ensures the stability of the control object relative to some point in the state space. Methods of symbolic regression are applied for numerical synthesis of a stabilization system. The second contour provides optimal control of the stable equilibrium point position. The present paper provides a study of various approaches to find the optimal location of equilibrium points. A new problem statement with the search of function for optimal location of the equilibrium points in the second stage of the synthesized optimal control approach is formulated. Symbolic regression methods of solving the stated problem are discussed. In the presented numerical example, a piece-wise linear function is applied to approximate the location of equilibrium points.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 149-170
Author(s):  
Afeez Abidemi ◽  
Rohanin Ahmad ◽  
Nur Arina Bazilah Aziz

This study presents a two-strain deterministic model which incorporates Dengvaxia vaccine and insecticide (adulticide) control strategies to forecast the dynamics of transmission and control of dengue in Madeira Island if there is a new outbreak with a different virus serotypes after the first outbreak in 2012. We construct suitable Lyapunov functions to investigate the global stability of the disease-free and boundary equilibrium points. Qualitative analysis of the model which incorporates time-varying controls with the specific goal of minimizing dengue disease transmission and the costs related to the control implementation by employing the optimal control theory is carried out. Three strategies, namely the use of Dengvaxia vaccine only, application of adulticide only, and the combination of Dengvaxia vaccine and adulticide are considered for the controls implementation. The necessary conditions are derived for the optimal control of dengue. We examine the impacts of the control strategies on the dynamics of infected humans and mosquito population by simulating the optimality system. The disease-freeequilibrium is found to be globally asymptotically stable whenever the basic reproduction numbers associated with virus serotypes 1 and j (j 2 {2, 3, 4}), respectively, satisfy R01,R0j 1, and the boundary equilibrium is globally asymptotically stable when the related R0i (i = 1, j) is above one. It is shown that the strategy based on the combination of Dengvaxia vaccine and adulticide helps in an effective control of dengue spread in the Island.


Author(s):  
Abdul Faliq Anwar ◽  
Windarto Windarto ◽  
Cicik Alfiniyah

Co-infection of influenza A virus and pneumococcus is caused by influenza A virus and pneumococcus bacteria which infected host cell at the same time. The purpose of this thesis is to analyze stability of equilibrium point on mathematical model within-host co-infection of influenza A and pneumococcus. Based on anlytical result of the model there are four quilibrium points, non endemic co-infection equilibrium (E0), endemic influenza A virus equilibrium (E1), endemic pneumococcus equilbrium (E2) and endemic co-infection equilibrium (E3). By Next Generation Matrix (NGM), we obtain two basic reproduction number, which are basic reproduction number for influenza A virus (R0v) and basic reproduction number for pneumococcus (R0b). Existence of equilibrium point and local stability of equilibrium point dependent on basic reproduction number. Non endemic co-infection equilibrium is locally asymtotically stable if R0v < 1 and R0b < 1; influenza A virus endemic equilibrium is locally asymtotically stable if R0v > 1 and R0b > 1; pneumococcus endemic equilibrium is locally asymtotically stable if R0v < 1 and R0b > 1. Meanwhile, the co-infection endemic equilibrium is locally asymtotically stable if R0v > 1 and R0b > 1. From the numerical simulation result, it was shown that increasing the number of influenza A virus and pneumococcus made the number of population cell infected by influenza A virus and pneumococcus (co-infection) also increased.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Nathan Oigo Mokaya ◽  
Haileyesus Tessema Alemmeh ◽  
Cyrus Gitonga Ngari ◽  
Grace Gakii Muthuri

In the present paper, we formulate a new mathematical model for the dynamics of moral corruption with comprehensive age-appropriate sexual information and provision of guidance and counselling. The population is subdivided into three (3) different compartments according to their level of information on sexual matters. The model is proved to be both epidemiologically and mathematically well posed. The existence of unique morally corrupt-free and endemic equilibrium points is investigated. The basic reproduction number with respect to morally corrupt-free equilibrium is obtained using next generation matrix approach to monitor the dynamics of corrupt morals and ascertain its level in order to suggest effective intervention strategies to control this problem. The local as well as global asymptotic stability of these equilibrium points is studied. The analysis reveals a globally asymptotically stable morally corrupt-free equilibrium whenever ℛ 0 ≤ 1 and a globally asymptotically stable endemic equilibrium if otherwise. Further analysis, using center manifold theory, shows that the model exhibits forward bifurcation insinuating that the classical epidemiological requirement of ℛ 0 ≤ 1 is necessary and sufficient for elimination of moral corruption. A brief discussion on the graphical results using the available numerical procedures is shown. From numerical simulations, it was ascertain that integrated control strategy is the best approach to fight against moral corruption transmission. Lastly, some key parameters that show significance in the moral corruption elimination from the society are also exploited.


2021 ◽  
Vol 19 (2) ◽  
pp. 1677-1695
Author(s):  
Boli Xie ◽  
◽  
Maoxing Liu ◽  
Lei Zhang

<abstract><p>In order to study the impact of limited medical resources and population heterogeneity on disease transmission, a SEIR model based on a complex network with saturation processing function is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which means that $ R_{0} &lt; 1 $ is not enough to eradicate this disease from the population. However, if the direction is positive, we find that within a certain parameter range, there may be multiple equilibrium points near $ R_{0} = 1 $. Secondly, the influence of population heterogeneity on virus transmission is analyzed, and the optimal control theory is used to further study the time-varying control of the disease. Finally, numerical simulations verify the stability of the system and the effectiveness of the optimal control strategy.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document