scholarly journals Mathematical Modelling and Analysis of Corruption of Morals amongst Adolescents with Control Measures in Kenya

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Nathan Oigo Mokaya ◽  
Haileyesus Tessema Alemmeh ◽  
Cyrus Gitonga Ngari ◽  
Grace Gakii Muthuri

In the present paper, we formulate a new mathematical model for the dynamics of moral corruption with comprehensive age-appropriate sexual information and provision of guidance and counselling. The population is subdivided into three (3) different compartments according to their level of information on sexual matters. The model is proved to be both epidemiologically and mathematically well posed. The existence of unique morally corrupt-free and endemic equilibrium points is investigated. The basic reproduction number with respect to morally corrupt-free equilibrium is obtained using next generation matrix approach to monitor the dynamics of corrupt morals and ascertain its level in order to suggest effective intervention strategies to control this problem. The local as well as global asymptotic stability of these equilibrium points is studied. The analysis reveals a globally asymptotically stable morally corrupt-free equilibrium whenever ℛ 0 ≤ 1 and a globally asymptotically stable endemic equilibrium if otherwise. Further analysis, using center manifold theory, shows that the model exhibits forward bifurcation insinuating that the classical epidemiological requirement of ℛ 0 ≤ 1 is necessary and sufficient for elimination of moral corruption. A brief discussion on the graphical results using the available numerical procedures is shown. From numerical simulations, it was ascertain that integrated control strategy is the best approach to fight against moral corruption transmission. Lastly, some key parameters that show significance in the moral corruption elimination from the society are also exploited.

2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
James Nicodemus Paul ◽  
Silas Steven Mirau ◽  
Isambi Sailon Mbalawata

COVID-19 is a world pandemic that has affected and continues to affect the social lives of people. Due to its social and economic impact, different countries imposed preventive measures that are aimed at reducing the transmission of the disease. Such control measures include physical distancing, quarantine, hand-washing, travel and boarder restrictions, lockdown, and the use of hand sanitizers. Quarantine, out of the aforementioned control measures, is considered to be more stressful for people to manage. When people are stressed, their body immunity becomes weak, which leads to multiplying of coronavirus within the body. Therefore, a mathematical model consisting of six compartments, Susceptible-Exposed-Quarantine-Infectious-Hospitalized-Recovered (SEQIHR) was developed, aimed at showing the impact of stress on the transmission of COVID-19 disease. From the model formulated, the positivity, bounded region, existence, uniqueness of the solution, the model existence of free and endemic equilibrium points, and local and global stability were theoretically proved. The basic reproduction number ( R 0 ) was derived by using the next-generation matrix method, which shows that, when R 0 < 1 , the disease-free equilibrium is globally asymptotically stable whereas when R 0 > 1 the endemic equilibrium is globally asymptotically stable. Moreover, the Partial Rank Correlation Coefficient (PRCC) method was used to study the correlation between model parameters and R 0 . Numerically, the SEQIHR model was solved by using the Rung-Kutta fourth-order method, while the least square method was used for parameter identifiability. Furthermore, graphical presentation revealed that when the mental health of an individual is good, the body immunity becomes strong and hence minimizes the infection. Conclusively, the control parameters have a significant impact in reducing the transmission of COVID-19.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 350 ◽  
Author(s):  
Mohammad A. Safi

A new two-stage model for assessing the effect of basic control measures, quarantine and isolation, on a general disease transmission dynamic in a population is designed and rigorously analyzed. The model uses the Holling II incidence function for the infection rate. First, the basic reproduction number ( R 0 ) is determined. The model has both locally and globally asymptotically stable disease-free equilibrium whenever R 0 < 1 . If R 0 > 1 , then the disease is shown to be uniformly persistent. The model has a unique endemic equilibrium when R 0 > 1 . A nonlinear Lyapunov function is used in conjunction with LaSalle Invariance Principle to show that the endemic equilibrium is globally asymptotically stable for a special case.


2020 ◽  
Author(s):  
Jangyadatta Behera ◽  
Aswin Kumar Rauta ◽  
Yerra Shankar Rao ◽  
Sairam Patnaik

Abstract In this paper, a mathematical model is proposed on the spread and control of corona virus disease2019 (COVID19) to ascertain the impact of pre quarantine for suspected individuals having travel history ,immigrants and new born cases in the susceptible class following the lockdown or shutdown rules and adopted the post quarantine process for infected class. Set of nonlinear ordinary differential equations (ODEs) are generated and parameters like natural mortality rate, rate of COVID-19 induced death, rate of immigrants, rate of transmission and recovery rate are integrated in the scheme. A detailed analysis of this model is conducted analytically and numerically. The local and global stability of the disease is discussed mathematically with the help of Basic Reproduction Number. The ODEs are solved numerically with the help of Runge-Kutta 4th order method and graphs are drawn using MATLAB software to validate the analytical result with numerical simulation. It is found that both results are in good agreement with the results available in the existing literatures. The stability analysis is performed for both disease free equilibrium and endemic equilibrium points. The theorems based on Routh-Hurwitz criteria and Lyapunov function are proved .It is found that the system is locally asymptotically stable at disease free and endemic equilibrium points for basic reproduction number less than one and globally asymptotically stable for basic reproduction number greater than one. Finding of this study suggest that COVID-19 would remain pandemic with the progress of time but would be stable in the long-term if the pre and post quarantine policy for asymptomatic and symptomatic individuals are implemented effectively followed by social distancing, lockdown and containment.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ebrima Kanyi ◽  
Ayodeji Sunday Afolabi ◽  
Nelson Owuor Onyango

This paper presents a mathematical model that describes the transmission dynamics of schistosomiasis for humans, snails, and the free living miracidia and cercariae. The model incorporates the treated compartment and a preventive factor due to water sanitation and hygiene (WASH) for the human subpopulation. A qualitative analysis was performed to examine the invariant regions, positivity of solutions, and disease equilibrium points together with their stabilities. The basic reproduction number, R 0 , is computed and used as a threshold value to determine the existence and stability of the equilibrium points. It is established that, under a specific condition, the disease-free equilibrium exists and there is a unique endemic equilibrium when R 0 > 1 . It is shown that the disease-free equilibrium point is both locally and globally asymptotically stable provided R 0 < 1 , and the unique endemic equilibrium point is locally asymptotically stable whenever R 0 > 1 using the concept of the Center Manifold Theory. A numerical simulation carried out showed that at R 0 = 1 , the model exhibits a forward bifurcation which, thus, validates the analytic results. Numerical analyses of the control strategies were performed and discussed. Further, a sensitivity analysis of R 0 was carried out to determine the contribution of the main parameters towards the die out of the disease. Finally, the effects that these parameters have on the infected humans were numerically examined, and the results indicated that combined application of treatment and WASH will be effective in eradicating schistosomiasis.


2019 ◽  
Vol 2019 (1) ◽  
pp. 31-54
Author(s):  
Oluwatayo M. Ogunmiloro

Abstract In this paper, a mathematical nonlinear model system of equations describing the dynamics of the co-interaction between malaria and filariasis epidemic affecting the susceptible host population of pregnant women in the tropics is formulated. The basic reproduction number Rmf of the coepidemic model is obtained, and we investigated that it is the threshold parameter between the extinction and persistence of the coepidemic disease. If Rmf < 1, then the disease-free steady state is both locally and globally asymptotically stable resulting in the disease dying out of the host. Also, if Rmf > 1, the disease lingers on. The center manifold theory is used to show that the unique endemic equilibrium is locally asymptotically stable. However, variations in the parameter values involved in the model build up will bring about appropriate control measures to curtail the spread of the coepidemic disease. Numerical simulations are carried out to confirm the theoretical results.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Manuel De la Sen ◽  
Santiago Alonso-Quesada ◽  
Asier Ibeas

A new discrete Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is proposed, and its properties of non-negativity and (both local and global) asymptotic stability of the solution sequence vector on the first orthant of the state-space are discussed. The calculation of the disease-free and the endemic equilibrium points is also performed. The model has the following main characteristics: (a) the exposed subpopulation is infective, as it is the infectious one, but their respective transmission rates may be distinct; (b) a feedback vaccination control law on the Susceptible is incorporated; and (c) the model is subject to delayed partial re-susceptibility in the sense that a partial immunity loss in the recovered individuals happens after a certain delay. In this way, a portion of formerly recovered individuals along a range of previous samples is incorporated again to the susceptible subpopulation. The rate of loss of partial immunity of the considered range of previous samples may be, in general, distinct for the various samples. It is found that the endemic equilibrium point is not reachable in the transmission rate range of values, which makes the disease-free one to be globally asymptotically stable. The critical transmission rate which confers to only one of the equilibrium points the property of being asymptotically stable (respectively below or beyond its value) is linked to the unity basic reproduction number and makes both equilibrium points to be coincident. In parallel, the endemic equilibrium point is reachable and globally asymptotically stable in the range for which the disease-free equilibrium point is unstable. It is also discussed the relevance of both the vaccination effort and the re-susceptibility level in the modification of the disease-free equilibrium point compared to its reached component values in their absence. The influences of the limit control gain and equilibrium re-susceptibility level in the reached endemic state are also explicitly made viewable for their interpretation from the endemic equilibrium components. Some simulation examples are tested and discussed by using disease parameterizations of COVID-19.


2014 ◽  
Vol 9 (2) ◽  
pp. 52
Author(s):  
Roni Tri Putra ◽  
Sukatik - ◽  
Sri Nita ◽  
Yandraini Yunida

In this paper, it will be studied global stability endemic of equilibrium points of  a SEIR model with infectious force in latent, infected and immune period. From the model it will be found investigated the existence and its stability of points its equilibrium. The global stability of equilibrium points is depending on the value of the basic reproduction number  If   there is a unique endemic equilibrium which is globally asymptotically stable.


BIOMATH ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2006143
Author(s):  
Musa Rabiu ◽  
Robert Willie ◽  
Nabendra Parumasur

We develop a virus-resistant HIV-1 mathematical model with behavioural change in HIV-1 resistant non-progressors. The model has both disease-free and endemic equilibrium points that are proved to be locally asymptotically stable depending on the value of the associated reproduction numbers. In both models, a non-linear Goh{Volterra Lyapunov function was used to prove that the endemic equilibrium point is globally asymptotically stable for special case while the method of Castillo-Chavez was used to prove the global asymptotic stability of the disease-free equilibrium point. In both the analytic and numerical results, this study shows that in the context of resistance to HIV/AIDS, total abstinence can also play an important role in protection against this notorious infectious disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 149-170
Author(s):  
Afeez Abidemi ◽  
Rohanin Ahmad ◽  
Nur Arina Bazilah Aziz

This study presents a two-strain deterministic model which incorporates Dengvaxia vaccine and insecticide (adulticide) control strategies to forecast the dynamics of transmission and control of dengue in Madeira Island if there is a new outbreak with a different virus serotypes after the first outbreak in 2012. We construct suitable Lyapunov functions to investigate the global stability of the disease-free and boundary equilibrium points. Qualitative analysis of the model which incorporates time-varying controls with the specific goal of minimizing dengue disease transmission and the costs related to the control implementation by employing the optimal control theory is carried out. Three strategies, namely the use of Dengvaxia vaccine only, application of adulticide only, and the combination of Dengvaxia vaccine and adulticide are considered for the controls implementation. The necessary conditions are derived for the optimal control of dengue. We examine the impacts of the control strategies on the dynamics of infected humans and mosquito population by simulating the optimality system. The disease-freeequilibrium is found to be globally asymptotically stable whenever the basic reproduction numbers associated with virus serotypes 1 and j (j 2 {2, 3, 4}), respectively, satisfy R01,R0j 1, and the boundary equilibrium is globally asymptotically stable when the related R0i (i = 1, j) is above one. It is shown that the strategy based on the combination of Dengvaxia vaccine and adulticide helps in an effective control of dengue spread in the Island.


Sign in / Sign up

Export Citation Format

Share Document