scholarly journals RENDEMEN DAN KOMPOSISI PROKSIMAT GELATIN KULIT IKAN BELUT DAN LELE PADA KEADAAN SEGAR DAN KERING (YIELD AND PROXIMATE OF GELATIN EXTRACTED FROM FRESH AND DRY SWAMP ELL AND CATFISH SKIN)

2016 ◽  
Vol 2 (4) ◽  
pp. 111
Author(s):  
Hafni Rahmawati ◽  
Yudi Pranoto

<p>Kulit ikan belut dan lele berpotensi untuk diekstrak gelatinnya. Kulit ikan belut dan lele tidak bersisik, berlendir dan berlemak untuk ikan lele, berbeda dengan kulit ikan pada umumnya yang dijadikan gelatin. Penelitian ini mempelajari tentang gelatin kulit ikan belut dan lele dari segi rendemen dan komposisi proksimat. Untuk mengetahui pengaruh pengeringan, kondisi kulit segar dan kering juga dipelajari. Tahapan ekstraksi yang dilakukan untuk keseluruhan jenis ikan sama, kecuali penanganan kulit ikan kering yang sebelumnya direndam dalam air selama 4 jam. Kulit ikan direndam kembali dalam 0,05M asam asetat selama 10 jam, kemudian dicuci dan diekstraksi dengan aquadest pada suhu 80<sup>O</sup>C selama 2 jam, cairan yang didapat difiltrasi. Filtratnya dikeringkan dalam cabinet dryer suhu 55<sup>O</sup>C selama        48 jam hingga diperoleh lembaran gelatin, kemudian diblender menjadi granula gelatin.</p><p>Hasil penelitian menunjukkan bahwa gelatin kulit ikan kering mempunyai rendemen sedikit lebih rendah dibandingkan gelatin dari kulit ikan segarnya. Kadar protein gelatin kulit ikan kering telihat tinggi dibandingkan kulit segarnya. Pengeringan kulit ikan berpengaruh pada penurunan kadar abu dan lemak, namun tidak mempengaruhi kadar air gelatin hasil ekstraksi. Gelatin kulit segar ikan lele memiliki nilai rendemen tertinggi yaitu 22,01%. Komposisi proksimat yang terbaik diantara keseluruhan kondisi dan jenis kulit dapat dilihat pada gelatin kulit segar ikan belut dimana memiliki kadar air 9,91%; kadar abu 3,07%; kadar protein 91,61%; dan kadar lemak 0,82%.</p><p><em>Skin of swam ell and catfish were potential to gelatin</em><em> extracted. Swamp ell skin doesn’t have scales, with much mucus and a few fat for catfish, it’s different from another fish skin that gelatin extracted usually. This research was studied yield and proximate gelatin extracted from skin of swam ell and catfish. Influence of drying was observed too.</em></p><p><em>The first stage of the research was raw material preparation (fresh and dry fish skin) soaked in aquadest for 4 hours. Fish skin extracted using 0,05 M acetic acid for      10 hours, washed in water and then extracted using aquadest at 80<sup>O</sup>C for 2 hours to get gelatin</em><em> liquid, the liquid was filtrated. Filtrat was dried in cabinet dryer at 55<sup>O</sup>C for 48 hours to get gelatin layers, and then blended to get gelatin granule. </em> <em>The results were gelatin</em><em> yield from dry fish skin lower than fresh fish skin. Gelatin protein from dry fish skin more higher than fresh skin. Influence of fish skin drying was decrease gelatin ash and fat, but gelatin moisture wasn’t influenced. Gelatin from fresh skin swamp ell was the best gelatin with moisture 9,91%, ash 3,07%, protein 91,61%, lipid 0,82%. </em></p>

2016 ◽  
Vol 2 (3) ◽  
pp. 18
Author(s):  
Hafni Rahmawati ◽  
Yudi Pranoto

Pengeringan kulit ikan sebagai bahan baku gelatin berpengaruh terhadap sifat fisiko-kimia. Untuk mengetahui pengaruh pengeringan dilakukan perbandingan kulit ikan dalam kondisi segar dan kering. Selain itu untuk mempelajari sifat fisiko-kimia gelatin hasil ekstrasi ikan air tawar digunakan kulit ikan belut dan lele. Kulit ikan belut dan lele tidak bersisik, berlendir dan berlemak untuk ikan lele, berbeda dengan kulit ikan pada umumnya yang dijadikan gelatin. Tahapan ekstraksi yang dilakukan untuk keseluruhan jenis ikan sama, kecuali penanganan kulit ikan kering yang sebelumnya direndam dalam air selama 4 jam. Kulit ikan direndam kembali dalam 0,05M asam asetat selama 10 jam, kemudian dicuci dan diekstraksi dengan aquadest pada suhu 80OC selama 2 jam, cairan yang didapat difiltrasi. Filtratnya dikeringkan dalam cabinet dryer suhu 55OC selama 48 jam hingga diperoleh lembaran gelatin, kemudian diblender menjadi granula gelatin.Hasil penelitian menunjukkan bahwa gelatin kulit ikan kering mempunyai kekentalan setingkat dengan gelatin dari kulit ikan segarnya, kekuatan gel dan titik leleh pun lebih tinggi. Pengeringan kulit ikan berpengaruh pada peningkatan nilai kekeruhan dan warna (L,a, b). Gelatin kulit kering ikan belut adalah yang terbaik dengan kekentalan 6,65 cps, kekuatan gel 206,30 Bloom, dan titik leleh 22,33OC. Namun dari kekeruhan yaitu 1,65 ntu dan warna (L = 41,87, a = 8,90, b = 27,27) yang terbaik dalah gelatin kulit segar ikan belut.Fish skin was a raw material for gelatin extracted. Fish skin drying was effect to physico-chemical of gelatin. Fresh fish skin and dry fish skin was compare to studied gelatin extracted. Swamp ell skin and catfish skin was compare too. Swamp ell skin doesn’t have scales, with much mucus and a few fat for catfish, it’s different from another fish skin that gelatin extracted usually.The first stage of the research was raw material preparation (fresh and dry fish skin) soaked in aquadest for 4 hours. Fish skin extracted using 0,05 M acetic acid for 10 hours, washed in water and then extracted using aquadest at 80OC for 2 hours to get gelatin liquid, the liquid was filtrated. Filtrat was dried in cabinet dryer at 55OC for  48 hours to get gelatin layers, and then blended to get gelatin granule. The results were showing viscosity of gelatin from dry fish skin as same as from fresh fish skin, gel strength and melting point of gelatin from dry fish skin was higher than from fresh fish skin. Influence of fish skin drying was increase turbidity and color of gelatin. The best gelatin was ekstracted from dry skin swamp ell with viscosity 6,65 cps, gel strength 206,30 Bloom, melting point 22,33OC. Gelatin from fresh skin swamp ell was the best turbidity 1,65 ntu and color (L = 41,87, a = 8,90, b = 27,27).     


2016 ◽  
Vol 19 (1) ◽  
pp. 79 ◽  
Author(s):  
Ika Astiana ◽  
Nurjanah Nurjanah ◽  
Tati Nurhayati

<p>Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemical<br />or combination of chemical and enzymatic processes. Extraction of collagen chemically can do with the<br />acid process that produces acid soluble collagen (ASC). This study aimed to determine the optimum<br />concentration and time of pretreatment and extraction, also to determine the characteristics of the acid<br />soluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH at<br />the concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and<br />0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combination<br />for eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 M<br />for 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db) and 5.79±0.47%<br />(wb). Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%), alanine<br />(13.71±0.075%), and proline (12.15±0.132%). Collagen from yellow tail fish skin has α1, α2, β and γ<br />protein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and melting<br />temperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM has<br />fibers on the surface.<br />Keywords: cholesterol, fatty acids, meat tissue, proximate, red snapper (L. argentimaculatus)</p>


2020 ◽  
Vol 8 (03) ◽  
pp. 253
Author(s):  
Ridwan Santoso

In this study consists of 5 stages, namely preparation of raw materials, cellulose isolation, alkalization, carboxymethylization, and purification. The raw material preparation stage is banana stem powder sieved at mesh 60. Furthermore, cellulose isolation of banana stems is carried out with 90% formic acid with a stirring speed of 300 rpm for 180 minutes at 100 0C. Alkalised using 15% NaOH and varying concentrations of 70%, 80%, 90% and 100% isopropanol solvents in a 100 rpm waterbath shaker for 60 minutes at 300C. The next step is carboxymethylation between alkali cellulose and trichloroacetic acid for 180 minutes at 550C in a 100 rpm waterbath shaker. At the purification glacial acetic acid and ethanol are used to remove unwanted by-products. The results characteristics with the highest degree of substitution value of 0.8 in the composition of 100% isopropanol, the highest purity of 99.7%, pH 4.8 and 5% moisture content.


Author(s):  
László G. Kömüves ◽  
Donna S. Turner ◽  
Kathy S. McKee ◽  
Buford L. Nichols ◽  
Julian P. Heath

In this study we used colloidal gold probes to detect the intracellular localization of colostral immunoglobulins in intestinal epithelial cells of newborn piglets.Tissues were obtained from non-suckled newborn and suckled piglets aged between 1 hour to 1 month. Samples were fixed in 2.5 % glutaraldehyde, osmicated and embedded into Spurr’s resin. Thin (80 nm) sections were etched with 5% sodium ethoxide for 5 min, washed and treated with 4 % sodium-m-periodate in distilled water for 30 min. The sections were then first incubated with blocking buffer (2 % BSA, 0.25 % fish skin gelatin, 0.5 % Tween 20 in 10 mM Trizma buffer, pH=7.4 containing 500 mM NaCl) for 30 min followed by the immunoreagents diluted in the same buffer, 1 hr each. For the detection of pig immunoglobulins a rabbit anti-pig IgG antiserum was used followed by goat anti-rabbit IgG-Au10 or protein A-Au15 probes.


Vsyo o myase ◽  
1918 ◽  
pp. 44-47
Author(s):  
V.V. Nasonova ◽  
◽  
A.A. Motovilina ◽  
E.K. Tunieva ◽  
T.G. Kuznetsova ◽  
...  

2002 ◽  
Vol 54 (11) ◽  
pp. 534-539 ◽  
Author(s):  
Sorada Yoenyongbuddhagal ◽  
Athapol Noomhorm

2015 ◽  
Vol 48 ◽  
pp. 248-259 ◽  
Author(s):  
Phakawat Tongnuanchan ◽  
Soottawat Benjakul ◽  
Thummanoon Prodpran ◽  
Krisana Nilsuwan

Author(s):  
Sebastian Ponce ◽  
Stefanie Wesinger ◽  
Daniela Ona ◽  
Daniela Almeida Streitwieser ◽  
Jakob Albert

AbstractThe selective oxidative conversion of seven representative fully characterized biomasses recovered as secondary feedstocks from the agroindustry is reported. The reaction system, known as the “OxFA process,” involves a homogeneous polyoxometalate catalyst (H8PV5Mo7O40), gaseous oxygen, p-toluene sulfonic acid, and water as solvent. It took place at 20 bar and 90 °C and transformed agro-industrial wastes, such as coffee husks, cocoa husks, palm rachis, fiber and nuts, sugarcane bagasse, and rice husks into biogenic formic acid, acetic acid, and CO2 as sole products. Even though all samples were transformed; remarkably, the reaction obtains up to 64, and 55% combined yield of formic and acetic acid for coffee and cocoa husks as raw material within 24 h, respectively. In addition to the role of the catalysts and additive for promoting the reaction, the influence of biomass components (hemicellulose, cellulose and lignin) into biogenic formic acid formation has been also demonstrated. Thus, these results are of major interest for the application of novel oxidation techniques under real recovered biomass for producing value-added products. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document