scholarly journals IMPLEMENTASI ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI KELULUSAN MAHASISWA

2018 ◽  
Vol 5 (2) ◽  
pp. 169
Author(s):  
Muhammad Dedek Yalidhan

<p><em>Student’s graduation is one kind of the college accreditation elements by BAN-PT. Because of that. Information System is one of the department in STMIK Banjarbaru, there is no application has been implemented to predict imprecisely of student’s graduation time so far, which causes on time graduation percentage tend low every year. Therefore the accurate student’s graduation prediction can help the committe to choose the correct decisions in order to prevent the imprecisely of student’s graduation time. In this research, the backpropagation algorithm of artificial neural network will be implemented into the application with the output result as delayed and on time graduation. This reseach is using 318 data samples which the 70 % of it will be used as the training data and the other 30 % will be used as testing data. From the calculation of confusion matrix table’s the percentage of the prediction accuracy is 98.97 %.</em></p><p><em></em><em><strong>Keywords</strong>: student’s graduation, artificial neural network, backpropagation, confusion matrix</em></p><p><em></em><em>Kelulusan mahasiswa merupakan salah satu elemen dalam standar akreditasi perguruan tinggi oleh BAN-PT. Sistem Informasi adalah salah satu program studi yang ada di STMIK Banjarbaru, selama ini belum ada aplikasi yang diimplementasikan untuk memprediksi ketidaktepatan waktu kelulusan mahasiswanya yang menyebabkan angka kelulusan tepat waktu cenderung rendah setiap tahunnya. Oleh sebab itu, prediksi kelulusan mahasiswa yang akurat dapat membantu pihak Program Studi dalam mengambil keputusan-keputusan yang tepat untuk mencegah ketidaktepatan waktu kelulusan mahasiswanya. Pada penelitian ini, artificial neural network algoritma backpropagation diimplementasikan pada aplikasi yang dibuat dengan output lulus terlambat dan lulus tepat waktu. Penelitian ini menggunakan sebanyak 318 sampel data yang mana 70 % data digunakan sebagai data training dan 30 % data digunakan sebagai data testing. Dari hasil perhitungan tabel confusion matrix diperoleh persentase akurasi prediksi sebesar 98.97 %.</em></p><p><em></em><em><strong>Kata kunci</strong>: kelulusan mahasiswa, artificial neural network, backpropagation, confusion matrix</em></p>

2018 ◽  
Vol 215 ◽  
pp. 01011
Author(s):  
Sitti Amalia

This research proposed to design and implementation system of voice pattern recognition in the form of numbers with offline pronunciation. Artificial intelligent with backpropagation algorithm used on the simulation test. The test has been done to 100 voice files which got from 10 person voices for 10 different numbers. The words are consisting of number 0 to 9. The trial has been done with artificial neural network parameters such as tolerance value and the sum of a neuron. The best result is shown at tolerance value varied and a sum of the neuron is fixed. The percentage of this network training with optimal architecture and network parameter for each training data and new data are 82,2% and 53,3%. Therefore if tolerance value is fixed and a sum of neuron varied gave 82,2% for training data and 54,4% for new data


2014 ◽  
Vol 612 ◽  
pp. 83-88 ◽  
Author(s):  
Nitin Kotkunde ◽  
Aditya Balu ◽  
Amit Kumar Gupta ◽  
Swadesh Kumar Singh

Flow stress during hot deformation depends mainly on the strain, strain rate and temperature, and shows a complex nonlinear relationship with them. In this work, experimental flow stress have been predicted for Ti-6Al-4V alloy using isothermal uniaxial tensile tests ranging from 323K to 673K at an interval of 50K and strain rates 10-5, 10-4, 10-3 and 10-2 s-1. Based on the input variables strain, strain rate and temperature, a back propagation neural network model has been developed to predict the flow stress as output. The whole experimental data is randomly divided in two parts: 90% data as training data and 10% data as testing data. The artificial neural network enhanced with differential evolution algorithm is successfully trained based on the training data and employed to predict the flow stress values for the testing data, which were compared with the experimental values. Correlation coefficient for training and testing data is found to be 0.9997 and 0.9985 respectively. Based on the correlation coefficient, it indicates that predicted flow stress by using artificial neural network is in good agreement with experimental results.


2019 ◽  
Vol 12 (1) ◽  
pp. 33-40
Author(s):  
Khairi Budayawan ◽  
Yuhandri Yuhandri ◽  
Gunadi Widi Nurcahyo

The resonant frequency of an antenna is determined by the dimensional parameters and permittivity of the antenna substrate. Generally, to get the resonant frequency, a complex mathematical formula is needed to solve. For this reason, an intelligent method is offered to determine the resonant frequency more easily. In this study, an artificial neural network method with Backpropagation algorithm is used to overcome the problem. The data used were consisting of 80 training data and 15 testing data. The results have shown that the artificial neural network learning method with the backpropagation algorithm was successfully utilized to calculate the resonant frequency of microstrip antennas, where the precision of the resonant frequency obtained of 93.33% at an error of = 1%, and 100% at an error of = 2%.


Author(s):  
Afan Galih Salman ◽  
Yen Lina Prasetio

The use of technology of technology Artificial Neural Network (ANN) in prediction of rainfall can be done using the learning approach. ANN prediction accuracy measured by the coefficient of determination (R2) and Root Mean Square Error (RMSE).This research employ a recurrent optimized heuristic Artificial Neural Network (ANN) Recurrent Elman gradient descent adaptive learning rate approach using El-Nino Southern Oscilation (ENSO) variable, namely Wind, Southern Oscillation Index (SOI), Sea Surface Temperatur (SST) dan Outgoing Long Wave Radiation (OLR) to forecast regional monthly rainfall. The patterns of input data affect the performance of Recurrent Elman neural network in estimation process. The first data group that is 75% training data and 25% testing data produce the maximum R2 69.2% at leap 0 while the second data group that is 50% training data & 50% testing data produce the maximum R2 53.6%.at leap 0 Our result on leap 0 is better than leap 1,2 or 3. 


Survey Review ◽  
2021 ◽  
pp. 1-16
Author(s):  
Vinicius Francisco Rofatto ◽  
Marcelo Tomio Matsuoka ◽  
Ivandro Klein ◽  
Maria Luísa Silva Bonimani ◽  
Bruno Póvoa Rodrigues ◽  
...  

Author(s):  
Brian Bucci ◽  
Jeffrey Vipperman

In extension of previous methods to identify military impulse noise in the civilian environmental noise monitoring setting by means of a set of computed scalar metrics input to artificial neural network structures, Bayesian methods are investigated to classify the same dataset. Four interesting cases are identified and analyzed: A) Maximum accuracy achieve on training data, B) Maximum overall accuracy on blind testing data, C) Maximum accuracy on testing data with zero false positive detections, D) Maximum accuracy on testing data with zero false negative rejections. The first case is used to illustrative example and the later three represent actual monitoring modes. All of the cases are compared and contrasted to illuminate respective strengths and weaknesses. Overall accuracies of up to 99.8% are observed with no false negative rejections and accuracies of up to 98.4% are also achieved with no false positive detections.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


Author(s):  
Catur Atmaji ◽  
Zandy Yudha Perwira

In this study, observation on the differences in features quality of EEG records as a result of training on subjects has been made. The features of EEG records were extracted using two different methods, the root mean square which is acquired from the range between 0.5 and 5 seconds and the average of power spectrum estimation from the frequency range between 20 and 40Hz. All of the data consists of a 4-channel recording and produce good quality classification on artificial neural network, with each of which generates training data accuracy over 90%. However, different results are occured when the trained system is tested on other test data. The test results show that the two systems which are trained using training data with object with color background produce higher accuracy than the other two systems which are trained using training data with object without background color, 63.98% and 60.22% compared to 59.68% and 56.45% accuracy respectively. From the use of the features on the artificial neural network classification system, it can be concluded that the training system using EEG data records derived from the visualization of object with color background produces better features than the visualization of object without color background.


2020 ◽  
Vol 198 ◽  
pp. 03014
Author(s):  
Ruijie Zhang

Deformation monitoring, as a key link of information construction, runs through the entire process of the building design period, construction period and operation period[1]. At present, more mature static prediction methods include hyperbolic method, power polynomial method and Asaoka method. But these methods have many problems and shortcomings. In this paper, based on the characteristics of building foundation settlement and the methods widely discussed in this field, a wavelet neural network model with self-learning, self-organization and good nonlinear approximation ability is applied to the prediction problem of building settlement[2]. Using comparative analysis and induction method. The 20-phase monitoring data representing the deformation monitoring points of different settlement states of the line tunnel, using the observation data sequence of the first 15 phases respectively to take the cumulative settlement and interval settlement as training samples, through the BP artificial neural network and the improved wavelet neural network, for the last five periods Predict the observed settlement.Through the comparison, it is found that whether the interval settlement or the cumulative settlement is used, the prediction results of the wavelet neural network are basically better than the prediction results of the BP artificial neural network, and the number of trainings is greatly reduced. The adaptive prediction of the wavelet neural network. The ability is particularly obvious, and the prediction accuracy is significantly improved. Therefore, it can be shown that the wavelet neural network is indeed used in the settlement monitoring and forecast of buildings, which can obtain higher prediction accuracy and better prediction effect, and is a prediction method with great development potential.


2014 ◽  
Vol 17 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Gurjeet Singh ◽  
Rabindra K. Panda ◽  
Marc Lamers

The reported study was undertaken in a small agricultural watershed, namely, Kapgari in Eastern India having a drainage area of 973 ha. The watershed was subdivided into three sub-watersheds on the basis of drainage network and land topography. An attempt was made to relate the continuously monitored runoff data from the sub-watersheds and the whole-watershed with the rainfall and temperature data using the artificial neural network (ANN) technique. The reported study also evaluated the bias in the prediction of daily runoff with shorter length of training data set using different resampling techniques with the ANN modeling. A 10-fold cross-validation (CV) technique was used to find the optimum number of hidden neurons in the hidden layer and to avoid neural network over-fitting during the training process for shorter length of data. The results illustrated that the ANN models developed with shorter length of training data set avoid neural network over-fitting during the training process, using a 10-fold CV method. Moreover, the biasness was investigated using the bootstrap resampling technique based ANN (BANN) for short length of training data set. In comparison with the 10-fold CV technique, the BANN is more efficient in solving the problems of the over-fitting and under-fitting during training of models for shorter length of data set.


Sign in / Sign up

Export Citation Format

Share Document