scholarly journals PECULIARITIES OF LIGHTNING PROTECTOR OF GROUND SOLAR POWER PLANTS IN UKRAINE

Author(s):  
D. Derevianko ◽  
O. Danilin ◽  
K. Hilevych

One of the most promising and developing areas in the energy sector is development of renewable energy sources. Among others technologies of solar energy and wind power are the fastest to develop in the sector. That is why solar power plants are under discussion in this paper. The increase in the Solar Power Plant’s capacity in Ukraine from 2018 to 2020 reached 7 times. Problems that may interfere with the functioning of the ground solar power plants are considered as this technology covers large areas of land and is on the 1st place on the amount of lightning strikes among the renewables. Ways to solve the problems associated with the damage from direct lightning strikes for ground solar power plants are discussed in this paper. Active and passive types of lightning protection for inland solar power plants are investigated and their modeling is carried out and presented in this paper. The measures proposed in this paper based on the implementation of an active lightning protection system ensure uninterrupted operation of the ground solar power plants, avoid reduction of service life and unnecessary economic costs for the replacement of damaged photovoltaic modules, reduced costs related to complexity of installation of passive system in comparison to active lightning protection system.

2020 ◽  
pp. 48-55
Author(s):  
Olena I. Matsenko ◽  
Vladyslav S. Tereshchenko ◽  
Vladyslav S. Piven ◽  
Andrii A. Panchenko ◽  
Evhenyi A. Perekhod

The use of alternative energy sources, in particular solar energy, has gained rapid growth in recent years. This trend is prompting manufacturers of equipment for solar power plants to increase production volumes. At the same time, the question arises of the disposal of used modules, because each material has its service life. According to technical specifications, the average life of solar modules and batteries is 25-30 years. Decommissioning may occur earlier than this time due to the following reasons – moral and physical deterioration, mechanical damage, replacement of obsolete equipment with new, modernization of solar power plants. Already in 2030, it will be necessary to replace the solar modules installed in 2000. Therefore, there are acute questions not only regarding the development of technologies for processing waste equipment from solar power plants but also organizational and economic methods. This article discusses the main problems that arise during the utilization and recycling of solar modules, analyzes the experience of countries in resolving these issues. After all, the use of renewable energy sources should minimize the negative impact on the environment from energy production at all stages – from the production of equipment for a power plant to the disposal and recycling of this equipment. Keywords: solar panel, recycling, economic method, solar power, natural resource, economic problem, environment, renewable energy.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4550 ◽  
Author(s):  
Xueqing Liu ◽  
Song Yue ◽  
Luyi Lu ◽  
Jianlan Li

Solar energy is considered to be one of most promising renewable energy sources because of its availability and cleanliness. The phenomenon of dust deposition on solar mirrors greatly reduces the power generation of solar power plants. In this work, the motion behaviors and deposition mechanics of dust particles are analyzed by the discrete element method (DEM). The effects of environmental and solar mirror conditions and particle self-factors on dust deposition weight are systematically studied here. The research results show that dust particles, after particle collision, immediately adhere to the mirror or rebound and finally flow away from the mirror, or they otherwise may remain stationary after making some relative motion. Alternatively, they may glide for some distance and finally come to rest on the mirror or leave from the system. Different motion behaviors after particle collision depend on different leading forces. Here, the leading forces are the liquid bridge force (Fc) and the contact force (Fb). When the leading forces are Fc, or Fc, and Fb, the dust particles will be deposited on the solar mirror. Besides, the force Fc cannot be negligible when studying the motion processes of dust particles. The dust deposition weight on solar mirrors can be controlled by altering the environmental and solar mirror conditions, and particle self-factors. In essence, dust deposition weight on solar mirrors decreases when decreasing the leading force Fc or increasing the leading force Fb. The research results give theoretical guidance for the prevention and removal of dust deposition on solar mirrors.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2087
Author(s):  
Zbigniew Brodziński ◽  
Katarzyna Brodzińska ◽  
Mikołaj Szadziun

The abandonment of conventional sources in favor of energy from renewable energy sources (RES) has a global dimension, and the dynamic increase in the share of energy from photovoltaic systems in the energy mix of many countries results from the possibility of obtaining it both on a small scale (micro-installations) and as part of economic investments (photovoltaic power plants). The study aimed to assess the economic efficiency of 22 photovoltaic farms located in northeastern Poland. The research covered 5 solar power plants with a capacity of up to 799 kWp (I), 13 between 800 and 1100 kWp (II), and 4 installations of 1.98 MWp (III). The evaluation was based on net present value (NPV), internal rate of return (IRR), payback period (PP), profitability index (PI), accounting rate of return (ARR). Additionally, a sensitivity analysis was carried out regarding the value of economic indicators. The analysis shows that all studied PV farms are economically justified investments (NPV > 0) regardless of the adopted scenario. Solar power plants of the largest analyzed capacity (group III) resulted in being the most profitable ones, but no linear relationship between the level of productivity and profitability was established. Due to the large variation in terrain shape in northeastern Poland, landscape value and social benefits, which are difficult to assess, the support system for investments regarding the construction of photovoltaic power plants proved to be the most effective in group I.


2021 ◽  
Vol 845 (1) ◽  
pp. 012157
Author(s):  
A S Kirichenko ◽  
E V Kirichenko

Abstract The features of agricultural energy in the Krasnodar Territory are considered and two main problems are identified: the shortage of generating capacities and the remoteness of low-power consumers from centralized networks, for the solution of which renewable energy sources, including solar energy, can be used. The use of solar power plants at the enterprises of the agro-industrial complex of the region has been substantiated. The importance of automating the process of assessing the territory suitable for the placement of solar power facilities and the features of its implementation are substantiated. Criteria have been obtained that influence the choice of the optimal option for placing solar power facilities, based on the methodology for calculating the power and the amount of generated energy. The features of calculating the matrix of spatial characteristics for renewable energy facilities in the Krasnodar Territory are shown. An algorithm for creating a matrix of spatial data and an algorithm for choosing the optimal option for placing solar power plants are presented. The use of a high-level programming language Python is proposed to implement the created algorithm. The conclusion is made about the possibility of automating the process of assessing the efficiency of the placement of solar power plants in the Krasnodar Territory using modern computing technology in the format of a geoformation application developed in the Python programming language.


2021 ◽  
Vol 23 (3) ◽  
pp. 37-44
Author(s):  
Đorđe Lazović ◽  
◽  
Kristina Džodić ◽  
Željko Đurišić

After the expiration of governmental incentive measures for renewable energy sources integration, economic feasibility of investing into solar power plants will highly depend on compatibility between production and variable prices. In order to achieve the maximum possible profit of the power plant in liberalized electricity market, it is necessary to consider the possibility of investing in solutions that are not common today, but with the potential of being more profitable in the future. Such a solution is a solar power plant consisting of vertically placed bifacial modules whose active surfaces are oriented in the east-west direction. This configuration of the power plant can achieve higher production in periods of high prices, and thus higher profits from the sale of electricity. On the other hand, such a solution is more expensive than a standard solar power plant with monofacial modules. In this paper, a comparison of return on investment in a bifacial power plant and a monofacial power plant with existing and prospective market conditions is performed. The influence of solar power plant production on the price of electricity was investigated on the example of Germany. Based on this research, a prognostic model of the daily price diagram on the unified European market until 2040 was formed. It served for the analysis of the profitability of investments in the two considered variants of the solar power plant realization.


2021 ◽  
Vol 13 (4) ◽  
pp. 257-266
Author(s):  
V. A. Nepomnyashchiy

One of the most promising areas in the development of the electric power industry is generally regarded to lie in expanding the share of renewable energy sources (RES) in the electric energy balance of power systems in the form of wind and solar power plants (WPP and SPP), the saving of organic fuel (coal, gas, fuel oil) and the reduction of environmentally harmful emissions into the atmosphere considered to be their most important advantages. However, the impact of RES on the controllability of the modes of operation of electric power systems and on the reliability of the IPS operation remains quite unexplored.Currently, the global energy industry uses 318 million kW of WPP and about 142.4 million kW of SPP, of which the major West European countries account for about 227 million kW, or 49.3%. On average, wind and solar power plants account for almost 30% of the total generating capacity in Western Europe, with Denmark having the largest share of WPP (47%) and Germany having the highest share of SPP (18.6%). However, an uncontrolled growth in the share of WPP and SPP in the structure of generating capacities of power systems begins to manifest itself in a sharp decline in the reliability of the power industry due to the fact that a number of negative properties of WPP and SPP have not been taken into account (at least, to a sufficient extent), which manifested themselves in practice in a system accident in the UK power system that occurred on August 09, 2019, when, as a result of an "ordinary" short circuit, a system accident occurred, with up to 1.1 million consumers with a total load of 1690 MW disconnected from the power supply system for a period of 15 to 45 minutes. This is estimated to have resulted in economic losses for consumers amounting to 12.3–15.0 million USD.The reason for this is that the high sensitivity of WPP, SPP, CCGT and gas piston units to voltage and frequency drops is not properly considered in conditions of insufficient capacity of the rotating (mobile) generation reserve. Damage can be prevented by increasing the rotating reserve within the available reserve of the power system, which will require an increase in funds for maintaining the same due to additional fuel consumption. The ratio of reduction of probable damage to consumers and the cost of additional fuel consumption for maintenance of a required rotating reserve in the power system allows to economically substantiate the strategy and scale of introduction of renewable energy sources to the power industry. 


2021 ◽  
Vol 16 (2) ◽  
pp. 379-384
Author(s):  
Radhika Swarnkar ◽  
Harikrishnan R

Renewable energy is a solution for electricity generation for cleaner and green energy. The aim of this paper is to find the energy potential of India in terms of sources, per-capita energy consumption and the main potential consumers. Comparing consumption of fossil fuels and Renewable energy sources (RES) of India in 2019 and 2020 and finally to find whether there is any change in energy generation of two solar power plants in different geographical location of India with the help of independent t-test statistics. In this paper two statistical analysis are proposed. One is the statistical analysis of installed capacity, generation and consumption of fossil fuels and renewable energy in India. Other one is the statistical analysis of two solar power plants located at different geographical locations in India. From the statistical analysis it is found that, installed capacity of coal, RES and hydro is increased in 2020 as compared to 2019. Total demand in January 2020 is 2,77,140.33 MW whereas total installed capacity is 3,71,126 MW, this means that installed capacity is more but are not in running condition. From the statistical analysis of two independent solar power plants it is found that solar power plant-1 generates more energy but with high conversion loss hence poor efficiency.


Vestnik MEI ◽  
2021 ◽  
pp. 49-58
Author(s):  
Yuriy V. Monakov ◽  
◽  
Sanzhar A. Sharapov ◽  
Daniil Yu. Seredkin ◽  
◽  
...  

The aim of this study was to estimate the efficiency of photovoltaic modules (PVM) used at solar power plants (SPP) in the Russian Federation territory and to analyze how adequate the procedure adopted for selecting protective devices in the PVM circuits is. In carrying out the study, a solar power plant analysis model developed in the PVSyst software environment using the SolarGIS weather database was used. The currently effective State Standard GOST R 56978-2016 (IEC/TS 62548: 2013): Photovoltaic Arrays. Specifications, which stipulates the procedure for selecting protective devices in the PVM circuits, is analyzed for sufficiency of the considered in it factors influencing the levels of currents in these circuits. Based on the modeling results, the values of the specific generated power were obtained, and the capacity utilization factor (CUF) values of SPPs were calculated for various regions of Russia. The data obtained can be used in performing the feasibility studies of constructing solar power plants in the Russian Federation territory, including those to be used for the consumers own needs. This data may also be needed in elaborating/updating the methodology for selecting protective devices in the PVM circuits. A conclusion can be drawn based on the obtained study results that the PVM operation features high efficiency in the Russian Federation territory. There is also a need to develop a procedure for selecting protective devices in the PVM circuits that would take into account the influence of insolation level, temperature and degradation of modules on the levels of short circuit currents in their circuits.


Author(s):  
Sagita Rochman ◽  
Achmad Alfianto

Solar power plants have been created using solar cells as power plants. This power plant utilizes the source of sunlight as its source.solar cell as receiving sunlight as a source of electricity. Utilization of sunlight to become electrical energy, Designed from tile as a medium and solar cell as a receiver of solar energy into electrical energy. Where batrai as a charging to be used, this tile as a tool planted solar cell so that it can be used tools that generate electrical energy. Solar power is one of the environmentally friendly renewable energy sources. Solar power is utilized by solar power plants to generate electricity. The electrical energy generated is the light energy converted by solar cells. The solar cell pool is arranged in such a way that it produces solar panels. The resulting electrical energy will be stored in a medium called.


Sign in / Sign up

Export Citation Format

Share Document