scholarly journals SOLAR POWER PLANT PLANNING WITH TILE MODIFICATION FOR SOLAR PANEL INSTALLATION

Author(s):  
Sagita Rochman ◽  
Achmad Alfianto

Solar power plants have been created using solar cells as power plants. This power plant utilizes the source of sunlight as its source.solar cell as receiving sunlight as a source of electricity. Utilization of sunlight to become electrical energy, Designed from tile as a medium and solar cell as a receiver of solar energy into electrical energy. Where batrai as a charging to be used, this tile as a tool planted solar cell so that it can be used tools that generate electrical energy. Solar power is one of the environmentally friendly renewable energy sources. Solar power is utilized by solar power plants to generate electricity. The electrical energy generated is the light energy converted by solar cells. The solar cell pool is arranged in such a way that it produces solar panels. The resulting electrical energy will be stored in a medium called.

Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Reni Listiana ◽  
Tri Hardiyanti Yasmin

Solar power plants are power plants that convert solar energy (light) into electrical energy. Generation of electricity can be done by using photovoltaic or can also called solar cell, which happened at this time, solar cell can not absorb sunlight optimally, because solar cell only silent in one direction (static) therefore needed smart system for generator Solar power for solar power plants to work more optimally, to make the smart system is needed to read data from several sensors. To find the direction of the arrival of the sunlight rays, used four light dependent resistor sensor (LDR). Light intensity data processing, motor rotation direction determination and other sensor data will be done by microcontroller. Then the data residing on the solar power plant will be displayed on the display and measured how much different in voltage, current and power generated by solar panel. Then the output of the solar power plant be compared among the system with tracking and without tracking. Keywords: PLTS, Light Sensor, voltage, current and power


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Reni Listiana ◽  
Tri Handayani Yasmin

Solar power plants are power plants that convert solar energy (light) into electrical energy. Generation of electricity can be done by using photovoltaic or can also called solar cell, which happened at this time, solar cell can not absorb sunlight optimally, because solar cell only silent in one direction (static) therefore needed smart system for generator Solar power for solar power plants to work more optimally, to make the smart system is needed to read data from several sensors. To find the direction of the arrival of the sunlight rays, used four light dependent resistor sensor (LDR). Light intensity data processing, motor rotation direction determination and other sensor data will be done by microcontroller. Then the data residing on the solar power plant will be displayed on the display and measured how much different in voltage, current and power generated by solar panel. Then the output of the solar power plant be compared among the system with tracking and without tracking.  


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


Author(s):  
I. R. Vashchyshak ◽  
V. S Tsykh

The urgency of the work is due to the feasibility of increasing the energy efficiency of solar power plants through the use of solar energy concentrators. Ways to improve the energy efficiency of solar panels using a sys-tem of directional mirrors, flat Fresnel lenses, spherical concentrators and trackers have been investigated. It is established that the most optimal way to improve the energy efficiency of solar panels is to use inexpensive track-ers with a simple design. The analysis of known types of solar panels, which differ in materials from which their elements are made, and the coefficients of efficiency – dependence of energy produced by a photocell on the intensity of solar radiation per unit of its surface has been carried out, and the type of solar panels by the criterion “price-quality” has been selected. A tracker design has been developed to track the angle of inclination of solar panels to increase efficiency. The electricity generated by the proposed solar power plant was calculated using an online calculator. It is projected to reduce losses when generating electricity for a given power plant due to the use of a tracker compared to a fixed power system, with the same number of solar panels. In order to reduce the cost of the tracker, it is suggested to orientate it to the south at once, and to change the inclination angles twice a year (in early April and late August). The energy efficiency of the power plant is calculated in two stages. At the first stage the amount of electricity from solar panels per year when adjusting only the angle of inclination of the panels to the south is calculated. At the second stage energy efficiency of the power plant is calculated taking into account the increase of energy efficiency of the solar power plant when using the tracker system. The calculated electricity generation of the proposed solar power plant with tracker confirmed the efficiency and feasibility of using the designed tracker system. The application of the designed tracker system allows to increase the energy efficiency of solar panels by an average of 25%.


2018 ◽  
Vol 73 ◽  
pp. 01008
Author(s):  
Isworo Pujotomo ◽  
Retno Aita Diantari

To meet the needs of electrical energy, there are alternative energy sources such as solar power in a form of solar power plant. An important equipment aim to handle the of converting of solar energy into electrical energy are solar cells. The development of devices used to modify solar energy into electrical energy has been done since the mid-first half of the last century. Gradually the device is named by scientists with a photovoltaic device, or so-called solar cells (solar cell. This research tested polycrystalline solar module in sunny weather, bright cloudy and overcast. The test results show the effect of solar cell surface temperature to the value of its output power [1]. The condition of the polycrystalline solar panels will work optimally at the measured 32° C - 50° C temperature range on the surface of the solar cell.


2021 ◽  
Vol 23 (3) ◽  
pp. 37-44
Author(s):  
Đorđe Lazović ◽  
◽  
Kristina Džodić ◽  
Željko Đurišić

After the expiration of governmental incentive measures for renewable energy sources integration, economic feasibility of investing into solar power plants will highly depend on compatibility between production and variable prices. In order to achieve the maximum possible profit of the power plant in liberalized electricity market, it is necessary to consider the possibility of investing in solutions that are not common today, but with the potential of being more profitable in the future. Such a solution is a solar power plant consisting of vertically placed bifacial modules whose active surfaces are oriented in the east-west direction. This configuration of the power plant can achieve higher production in periods of high prices, and thus higher profits from the sale of electricity. On the other hand, such a solution is more expensive than a standard solar power plant with monofacial modules. In this paper, a comparison of return on investment in a bifacial power plant and a monofacial power plant with existing and prospective market conditions is performed. The influence of solar power plant production on the price of electricity was investigated on the example of Germany. Based on this research, a prognostic model of the daily price diagram on the unified European market until 2040 was formed. It served for the analysis of the profitability of investments in the two considered variants of the solar power plant realization.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1361
Author(s):  
István Bodnár ◽  
Dávid Matusz-Kalász ◽  
Rafael Ruben Boros ◽  
Róbert Lipták

The Hungarian society and the Hungarian state are constantly increasing their solar capacity. More and more solar power plants are being put into operation. The largest of these has a 100 MW peak capacity. Such power plants do not require constant maintenance. However, in the case of low productivity, a conditional assessment is required. The reason for production loss can also be manufacturing, installation, and operational errors. A flying drone was used for finding failures by thermographic scouting. Furthermore, electroluminescent (EL) and flash tests give a comprehensive view of the real state of the modules in a mobile laboratory. We had the opportunity to summarize these test results of more than a thousand modules operating in a solar power plant. The report on the power plant shows that a significant part of the modules became unusable in a short time. After four years, 10% of the 260 Wp modules suffered a performance reduction of more than 10%.


2020 ◽  
Vol 30 (3) ◽  
pp. 480-497
Author(s):  
Dmitriy S. Strebkov ◽  
Yuriy Kh. Shogenov ◽  
Nikolay Yu. Bobovnikov

Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.


Author(s):  
V. V. Kuvshinov ◽  
E. A. Bekirov ◽  
E. V. Guseva

In the presented work, the possibility of using photovoltaic silicon panels with a double-sided arrangement of solar cells on the front and back sides is presented. With a lack of space for placing solar panels, these types of modules can significantly increase the generation of electrical energy. Equipping photovoltaic systems with rechargeable batteries contributes to a more rational consumption of electrical energy, while energy storage systems significantly increase the efficiency of solar generating systems. The proposed designs are intended to increase the power characteristics of solar energy converters in the winter months, in the presence of snow or when using reflective surfaces on road surfaces. The results of the experimental studies have shown a significant efficiency of the proposed designs, as well as an increase in the total generation of electrical energy. With the development of the global technical potential and a significant increase in the production of power plants for solar energy, a new opportunity has emerged to use combined solar plants for photovoltaic conversion of the flux of incident solar radiation. At the Department of Renewable Energy Sources and Electrical Systems and Networks at Sevastopol State University, at the site of the Institute of Nuclear Energy and Industry, a photovoltaic installation was developed and studied, consisting of two side silicon solar cells and energy storage systems. The article presents the results of experimental and theoretical studies, presents diagrams, drawings and graphs of various characteristics of the FSM-110D photovoltaic panel and storage batteries. The research results show the increased efficiency of the proposed installation, as well as a good possibility of using the presented photovoltaic systems to provide them with autonomous and individual consumers living in the Crimean region and the city of Sevastopol.


Sign in / Sign up

Export Citation Format

Share Document