scholarly journals Studies on Effect of Intercrops on Initial Growth Stages of Bamboo under Spices – Bamboo Based Agroforestry System in Tropical Regions of Jharkhand

Author(s):  
P.V. Dhanyashri ◽  
M.S. Malik ◽  
M.C. Shashikumar ◽  
Yogesh Kumar Agarwal ◽  
Saraswati Sahu ◽  
...  
2020 ◽  
Vol 115 (1) ◽  
pp. 39
Author(s):  
Mohammad MALMIR ◽  
Rahim MOHAMMADIAN ◽  
Ali SOROOSHZADEH ◽  
Ali MOKHTASSI-BIDGOLI ◽  
Somayeh EHSANFAR

<p>The continuous trend of global warming and increasing interest toward cultivating sugar beet (Beta vulgaris L. ssp. vulgaris var. altissima Döll) in tropical regions led us to conduct this study to investigate the effect of high temperature on sugar beet at initial growth stages. Thirty one genotypes were incubated at two temperatures (20 °C and 30 °C) in laboratory for germination test. The same genotypes were assessed for physiological parameters at 30 °C in greenhouse, too. Increasing temperature decreased germination indices with a high variability among the genotypes. Seed vigor index and seminal root length were decreased higher than other indices. The genotypes with higher greenness index had higher total dry mass, leaf area and leaf temperature depression (LTD), and those with higher seed vigor index indicated great quantum efficiency of PSII (Fv/Fm) values. ‘S1-92521’ produced high records in both laboratory and greenhouse experiments. Although ‘S1-92521’ showed good tolerance in both laboratory and greenhouse experiments, totally, sugar beet genotypes had different performance at two experiments. According to the results, seed vigor index could be used as a screening tool in laboratory, and LTD and Fv/Fm were considered as good criteria for screening heat-tolerant genotypes in greenhouse.</p>


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1616
Author(s):  
Božena Šerá ◽  
Vladimír Scholtz ◽  
Jana Jirešová ◽  
Josef Khun ◽  
Jaroslav Julák ◽  
...  

The legumes (Fabaceae family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries. This review summarizes current information about characteristics of legume seeds and adult plants after NTP treatment in relation to the seed germination and seedling initial growth, surface microbial decontamination, seed wettability and metabolic activity in different plant growth stages. The information about 19 plant species in relation to the NTP treatment is summarized. Some important plant species as soybean (Glycine max), bean (Phaseolus vulgaris), mung bean (Vigna radiata), black gram (V. mungo), pea (Pisum sativum), lentil (Lens culinaris), peanut (Arachis hypogaea), alfalfa (Medicago sativa), and chickpea (Cicer aruetinum) are discussed. Likevise, some less common plant species i.g. blue lupine (Lupinus angustifolius), Egyptian clover (Trifolium alexandrinum), fenugreek (Trigonella foenum-graecum), and mimosa (Mimosa pudica, M. caesalpiniafolia) are mentioned too. Possible promising trends in the use of plasma as a seed pre-packaging technique, a reduction in phytotoxic diseases transmitted by seeds and the effect on reducing dormancy of hard seeds are also pointed out.


1997 ◽  
Vol 3 ◽  
pp. 191-204 ◽  
Author(s):  
B. E. Bodenbender

The crystallographic orientations of echinoderm skeletal elements can supplement standard morphological comparisons in the exploration of echinoderm evolution. At a coarse scale, many echinoderms share a crystallographic pattern in whichcaxes radiate away from the axis of pentaradial symmetry. Within this common pattern, however,caxes of different taxa can differ dramatically in their degree of variability, angles of inclination, and relationships to the external morphology of skeletal elements. Crystallographic data reflect a variety of taxon-specific influences and therefore reveal different information in different taxa. In echinoids, orientations ofcaxes in coronal plates correlate well with high-level taxonomic groupings, whilecaxes of apical plates record modes of larval development. In blastoids,caxes of radial plates have a structural interpretation, with thecaxis oriented parallel to the orientation of the surface of the radial plate during its initial growth stages. In crinoids,caxes do not correlate with taxonomic group, plate morphology, or developmental sequence, but instead correlate with relative positions of skeletal elements on the calyx. Although their full potential has yet to be explored, the varied crystallographic patterns in echinoderms have been used to clarify skeletal structure, characterize developmental anomalies, and infer homologies of skeletal plates both within specimens and between groups. A axes are less constrained in their orientations thancaxes and offer less promise of revealing novel paleobiological information.


2008 ◽  
Vol 165 (10) ◽  
pp. 1041-1048 ◽  
Author(s):  
Mafalda Sales-Gomes ◽  
Ana Margarida Cavaco ◽  
Maria Emilia Lima-Costa

2015 ◽  
Vol 1741 ◽  
Author(s):  
Tomoaki Ide ◽  
Koichi Matsushima ◽  
Ryota Shimizu ◽  
Daisuke Yamashita ◽  
Hynwoong Seo ◽  
...  

ABSTRACTEffects of surface morphology of buffer layers on ZnO/sapphire heteroepitaxial growth have been investigated by means of “nitrogen mediated crystallization (NMC) method”, where the crystal nucleation and growth are controlled by absorbed nitrogen atoms. We found a strong correlation between the height distribution profile of NMC-ZnO buffer layers and the crystal quality of ZnO films. On the buffer layer with a sharp peak in height distribution, a single-crystalline ZnO film with atomically-flat surface was grown. Our results indicate that homogeneous and high-density nucleation at the initial growth stages is critical in heteroepitaxy of ZnO on lattice mismatched substrates.


2020 ◽  
pp. 3-6
Author(s):  
O. Borzykh ◽  
O. Tsurkan ◽  
L. Chervyakova ◽  
T. Panchenko

Goal. The effect of fungicides on the dynamics of the activity of peroxidase, catalase (CAT) and chlorophyll content in lupine plants during seed dressing has been established. Methods. Laboratory and vegetation researches were conducted in the laboratory of analytical chemistry of pesticides of the Institute of Plant Protection. Yellow lupine (Lupinus luteus L.), variety Obriy has been grown. The objects of research were fungicides triticonazol (40 g/t) and its combination with prochloraz (120 g/t). Determination of the content of fungicides in plants was carried out using chromatographic methods according to officially approved methods and me­thods developed in the laboratory of analytical chemistry of pesticides. Chlorophyll content and peroxidase activity were measured by colorimetric method, catalase activity — by titrimetric method. Results. According to the research results, the varying sensitivity of the enzymatic system of antioxidant defense (catalase, peroxidase) in response to seed dressing by fungicides was recorded. It showed that on the 10th day after sowing, content of triticonazol in plants was 0.8 mg/kg, and the peroxidase activity was similar to that in untreated plants. Subsequently, against the background of a decrease in the content of the active substance, a gradual activation of the enzyme was observed. Catalase activity also gradually increased beginning from the 14th day, and on the 30th day it exceeded the corresponding control indicator by 40%. When using a combination of triticonazol with prochloraz, the disturbance in the balance of peroxidase catalase was more significant. However, by the phase of 7—8 leaves, with a minimal total content of fungicides (0.38 mg/kg), the enzyme activity approached the control level, which is associated with the restoration of plant homeostasis and the formation of its adaptive potential under stress conditions. The stimulating effect of these fungicides on chlorophyll content at the initial growth stages of lupine was established. The chlorophyll concentration in fungicides-treated plants exceeded the control indicator by 11—29%. Conclusions. The use of systemic triazole fungicides to protect seedlings, improves the photosynthetic activity of plants and at the same time acts as a stress factor that activates protecting enzymes (catalase, peroxidase), which trigger the development of protective adaptive reactions of plants.


2001 ◽  
Author(s):  
Peter Vadasz ◽  
Alisa S. Vadasz

Abstract A neoclassical model is proposed for the growth of cell and other populations in a homogeneous habitat. The model extends on the Logistic Growth Model (LGM) in a non-trivial way in order to address the cases where the Logistic Growth Model (LGM) fails short in recovering qualitative as well as quantitative features that appear in experimental data. These features include in some cases overshooting and oscillations, in others the existence of a “Lag Phase” at the initial growth stages, as well as an inflection point in the “In curve” of the population size. The proposed neoclassical model recovers also the Logistic Growth Curve as a special case. Comparisons of the solutions obtained from the proposed neoclassical model with experimental data confirm its quantitative validity, as well as its ability to recover a wide range of qualitative features captured in experiments.


CrystEngComm ◽  
2018 ◽  
Vol 20 (42) ◽  
pp. 6811-6820 ◽  
Author(s):  
Yifan Chen ◽  
Zhizhong Chen ◽  
Junze Li ◽  
Yiyong Chen ◽  
Chengcheng Li ◽  
...  

A study of GaN nucleation and coalescence behaviors in the initial growth stages on nanoscale patterned sapphire substrates (NPSS) is presented.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 798
Author(s):  
Ana T. S. C. Brandão ◽  
Liana Anicai ◽  
Oana Andreea Lazar ◽  
Sabrina Rosoiu ◽  
Aida Pantazi ◽  
...  

Nano carbons, such as graphene and carbon nanotubes, show very interesting electrochemical properties and are becoming a focus of interest in many areas, including electrodeposition of carbon–metal composites for battery application. The aim of this study was to incorporate carbon materials (namely oxidized multi-walled carbon nanotubes (ox-MWCNT), pristine multi-walled carbon nanotubes (P-MWCNT), and reduced graphene oxide (rGO)) into a metallic tin matrix. Formation of the carbon–tin composite materials was achieved by electrodeposition from a choline chloride-based ionic solvent. The different structures and treatments of the carbon materials will create metallic composites with different characteristics. The electrochemical characterization of Sn and Sn composites was performed using chronoamperometry, potentiometry, electrochemical impedance, and cyclic voltammetry. The initial growth stages of Sn and Sn composites were characterized by a glassy-carbon (GC) electrode surface. Nucleation studies were carried out, and the effect of the carbon materials was characterized using the Scharifker and Hills (SH) and Scharifker and Mostany (SM) models. Through a non-linear fitting method, it was shown that the nucleation of Sn and Sn composites on a GC surface occurred through a 3D instantaneous process with growth controlled by diffusion. According to Raman and XRD analysis, carbon materials were successfully incorporated at the Sn matrix. AFM and SEM images showed that the carbon incorporation influences the coverage of the surface as well as the size and shape of the agglomerate. From the analysis of the corrosion tests, it is possible to say that Sn-composite films exhibit a comparable or slightly better corrosion performance as compared to pure Sn films.


Sign in / Sign up

Export Citation Format

Share Document