scholarly journals Biodegradable Sheet from Chitosan and Arrowroot Starch by Compression Moulding and its Properties

Author(s):  
Abhirup Mitra Genitha Immanuel

This research work entitled preparation and properties evaluation of biodegradable sheet from arrowroot starch and chitosan. It was carried out through compression moulding method by using Arrowroot starch, Chitosan, Glycerol, Citric acid, water. Functional properties like Tensile strength, Elongation at break (%), biodegradability were evaluated. There were two treatments T1 and T2 with varying composition of arrowroot starch and chitosan. Tensile strength was observed as 4.80MPA (T1) and 3.74 MPA (T2). Elongation at break % was 155.6% (T1) and 203.3% (T2). Soil burial method was used for evaluation of biodegradability of sheet. T2 had better percentage of decomposition in 30 days. The biodegradable sheet can be used for various packaging applications and safety to environment as they are biodegradable.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Henry C. Obasi ◽  
Isaac O. Igwe ◽  
Innocent C. Madufor

Polypropylene (PP)/plasticized cassava starch (PCS) blended with and without compatibilizer (polypropylene-graft-maleic anhydride (PP-g-MA)) via melt blending were prepared for soil burial which lasted for 90 days. Plasticized starch loadings of 0, 10, 20, 30, 40, and 50 wt.% were used, while pp-g-ma was used at 10 wt.% based on starch weight. The PP/PCS and PP/PCS/PP-G-MA blends were evaluated for their tensile properties. It was observed that the tensile strength, elongation at break, and young’s modulus decreased with increases in soil burial time as well as starch content for PP/PCS blends. Similar treads for the tensile properties were observed for PP/PCS/PP-g-MA, but with higher properties as compared to uncompatibilized blends. However, the tensile properties for both PP/PCS and PP/PCS/PP-g-Ma decrease with increases in starch loading and also as the burial period progressed.


2014 ◽  
Vol 679 ◽  
pp. 292-299
Author(s):  
Mohamad Kahar Ab Wahab ◽  
H. Ismail ◽  
N.Z. Noriman ◽  
H. Kamarudin ◽  
A.M. Mustafa Al Bakri

Effects of citric acid on the mechanical properties of thermoplastic tapioca starch/high density polyethylene/natural rubber (HDPE/NR/TPS) blends were investigated. The ratio between HDPE/NR was fixed at 70/30 and used as a matrix system. TPS loadings with and without modification with citric acid (CA) were varied from 0% to 30wt%. Mechanical and physical properties of blends were evaluated as a function of TPS loadings modified with and without CA. The tensile strength, Young’s modulus and elongation at break were found to decrease with increasing TPS content. However an improvement in the tensile strength for TPS modified with CA at 5%, 10% and 20% TPS loadings was observed. The degree of TPS adhesion and dispersion in HDPE/NR blends were determined by scanning electron microscope (SEM).Keywords; HDPE/NR/TPS, citric acid, tensile properties, morphology.


2018 ◽  
Vol 18 (4) ◽  
pp. 688 ◽  
Author(s):  
Silviana Silviana ◽  
Piontek Benedictus Brandon ◽  
Bella Ayu Silawanda

Chicken feet is one of sources used to produce biodegradable films due to inexpensive and abundant source. Chicken feet contains extracted gelatin amount of 27.61 to 33%. This biofilm was prepared from cassava bagasse starch with citric acid as cross-linker and glycerol as plasticizer. Cassava bagasse contains about 40–64% of starch. This paper observes the optimum composition of cassava bagasse starch-based biofilm preparation upon Central Composite Design with variables of gelatin, glycerol, and citric acid concentration with response of tensile strength and elongation at break. This research was executed in several steps, i.e. extraction of gelatin, extraction of cassava bagasse starch, and casting. Optimum condition of this biofilm preparation can be obtained at 12.98% w of gelatin content, 0.22% w of glycerol and 0.27% w of citric acid by releasing 21.73 MPa of tensile strength and 19.73% of elongation at break. Mass loss of biofilm with lower gelatin content gave almost the same mass loss for blank biofilm (cassava bagasse starch-based without gelatin content). Increasing of gelatin content in the biofilm, increasing of the biofilm mass loss. However, the biofilm had good thermal stability by thermal gravimetric analysis with higher temperature to obtain inorganic residue than that of blank biofilm.


2021 ◽  
Vol 7 (2) ◽  
pp. 52-57
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh

Global warming, diminution of fossil fuels, escalating oil price’s are the major reasons which forces the researchers to develop green products for the sustainable development. In this research work, green composites have been developed with jute fibers as reinforcement and poly lactic acid as matrix material using compression moulding technique. All composites were developed with maintaining the reinforcement as 30% fiber volume fraction. The influence of curing temperature with the range of 160°C, 170°C and 180°C was investigated for various mechanical properties of developed composites and degradation behaviour of developed composites were analysed using soil burial test. Results acquired from the tests specify that the tensile and flexural strength decreases with upsurge in curing temperature. Morphology study using scanning electron microscopy is further justified the findings obtained from mechanical tests. Biodegradation study was done on the all the three different composites under the soil burial conditions for 9 months and results indicate that composites developed at 160°C degrade faster as compared to others. This study also gives an optimum curing temperature for the development of jute/PLA composites.


2020 ◽  
pp. 10-14
Author(s):  
MAHBUBUR RAHMAN ◽  
MD. ABDULLAH AL MAMUN ◽  
PRITI SARKER ◽  
TARIKUL ISLAM ◽  
MUBARAK AHMAD KHAN

This research work aims to fabricate bamboo fabric reinforced polyester composites (BFRPCs) and investigate the mechanical and degradation properties of BFRPCs. Composite samples were prepared using hand lay-up technique. Bamboo fabric was used as reinforcement material, unsaturated polyester resin (UPR) was used as matrix and Methyl ethyl ketone peroxide (MEKP) was used as initiator which was employed as 0.5, 1, 2, 3 and 4% concentration. The mechanical properties of the BFRPC samples such as tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) were conducted. The degradation behaviors of the composites in soil burial, immersed in alkaline water and saline water were also evaluated. The BFRPC sample with 2 (%) MEKP concentration showed better tensile properties with TS and TM values of 39 MPa and 744 MPa respectively. For the 1 (%) MEKP concentration, the maximum values of BS, BM and IS were found to be 62.8 MPa, 1229 MPa and 25.7 kJ/m2 respectively. In the case of soil burial degradation the BFRPC sample with 1 (%) MEKP concentration shows better performance against loss of TS. No significant effect was found on the alkaline and saline water degradation properties of BFPRC for the variation of MEKP concentration. With the increase of all types of degradation time, decrease the tensile strength of all BFRPC samples.


Sign in / Sign up

Export Citation Format

Share Document