scholarly journals A Fault Diagnosis Approach for Rolling Bearing Based on Wavelet Packet Decomposition and GMM-HMM

2019 ◽  
Vol 24 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Liangpei Huang ◽  
Hua Huang ◽  
Yonghua Liu

Considering frequency domain energy distribution differences of bearing vibration signal in the different failure modes, a rolling bearing fault pattern recognition method is proposed based on orthogonal wavelet packet decomposition and Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). The orthogonal three-layer wavelet packet decomposition is used to obtain wavelet packet decomposition coefficients from low frequency to high frequency. Rolling bearing raw vibration signals are firstly decomposed into the wavelet signals of different frequency bands, then different frequency band signals are reconstructed respectively to extract energy features, which form feature vectors as the model input of GMM-HMM. A large number of samples are trained to get model parameters for different bearing faults, then several groups of test data are adopted to verify GMM-HMMs so different fault types of rolling bearings are recognized. By calculating the current state appearance probability of monitoring data in GMM-HMMs, different failure patterns are recognized and evaluated from the maximum probability. Similarly, we establish GMM-HMMs for different grade fault samples and evaluated the performance degradation state. Test results show that the proposed fault diagnosis approach can identify accurately the fault pattern of rolling bearings and evaluate performance degradation of bearings.

2010 ◽  
Vol 121-122 ◽  
pp. 813-818 ◽  
Author(s):  
Wei Guo Zhao ◽  
Li Ying Wang

On the basis of wavelet packet-characteristic entropy(WP-CE) and multiclass fuzzy support vector machine(MFSVM), the author proposes a new fault diagnosis method of vibrating of hearings,in which three layers wavelet packet decomposition of the acquired vibrating signals of hearings is performed and the wavelet packet-characteristic entropy is extracted,the eigenvector of wavelet packet of the vibrating signals is constructed,and taking this eigenvector as fault sample multiclass fuzzy support vector machine is trained to implement the intelligent fault diagnosis. The simulation result from the proposed method is effective and feasible.


2010 ◽  
Vol 108-111 ◽  
pp. 1075-1079 ◽  
Author(s):  
Li Ying Wang ◽  
Wei Guo Zhao ◽  
Ying Liu

On the basis of neural network based on wavelet packet-characteristic entropy(WP-CE) the author proposes a new fault diagnosis method of vibrating of hearings, in which three layers wavelet packet decomposition of the acquired vibrating signals of hearings is performed and the wavelet packet-characteristic entropy is extracted, the eigenvector of wavelet packet of the vibrating signals is constructed,and taking this eigenvector as fault sample the three layers BP neural network is trained to implement the intelligent fault diagnosis. The simulation result from the proposed method is effective and feasible.


2015 ◽  
Vol 764-765 ◽  
pp. 198-203
Author(s):  
Quan Li Liu ◽  
Chen Lu ◽  
Hong Mei Liu

A digital simulation method for the performance degradation signal of rolling bearings is developed based on the analysis of experimental data. A self-organizing map neural network is utilized to build the performance degradation assessment model of the rolling bearings based on characteristic parameter extraction. Wavelet packet decomposition is then implemented to extract the wavelet coefficients in the corresponding performance degradation sensitive band. Different health confidence values are injected into the extracted wavelet packet coefficients, and signals are reconstructed according to the simulation needs to obtain rolling bearing vibration data under different degradation degrees. Understanding the exact mathematical model of the measured object is unnecessary in this method; the method is simple and reliable and helps solve the problem of performance degradation data simulation. Finally, an FPGA-based performance degradation signal simulator is designed by combining the analogy procedure, employed to support the verification process of fault diagnosis and prediction capability.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1064 ◽  
Author(s):  
Jianmin Zhou ◽  
Faling Wang ◽  
Chenchen Zhang ◽  
Long Zhang ◽  
Peng Li

Rolling bearings are the most important parts in rotating machinery, and one of the most vulnerable parts to failure. The rolling bearing is a cyclic symmetrical structure that is stable under normal operating conditions. However, when the rolling bearing fails, its symmetry is destroyed, resulting in unstable performance and causing major accidents. If the performance of rolling bearings can be monitored and evaluated in real time, maintenance strategies can be implemented promptly. In this paper, by using wavelet packet energy entropy (WPEE), the early fault-free features of bearing and the failure samples of similar bearings are decomposed firstly, and the energy value is extracted as the original feature, simultaneously. Secondly, a radial basis function (RBF) neural network model is established by using early fault-free features and similar bearing failure characteristics. The bearing full-life data characteristics of the extracted features are added into the RBF model in an iterative manner to obtain performance degradation Indicator. Boxplot was introduced as an adaptive threshold method to determine the failure threshold. Finally, the results are verified by empirical mode decomposition and Hilbert envelope demodulation. A bearing accelerated life experiment is performed to validate the feasibility and validity of the proposed method. The experimental results show that the method can diagnose early fault points in time and evaluate the degree of bearing degradation, which is of great significance for industrial practical applications.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Jianpeng Ma ◽  
Shi Zhuo ◽  
Chengwei Li ◽  
Liwei Zhan ◽  
Guangzhu Zhang

When early failures in rolling bearings occur, we need to be able to extract weak fault characteristic frequencies under the influence of strong noise and then perform fault diagnosis. Therefore, a new method is proposed: complete ensemble intrinsic time-scale decomposition with adaptive Lévy noise (CEITDALN). This method solves the problem of the traditional complete ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN) method not being able to filter nonwhite noise in measured vibration signal noise. Therefore, in the method proposed in this paper, a noise model in the form of parameter-adjusted noise is used to replace traditional white noise. We used an optimization algorithm to adaptively adjust the model parameters, reducing the impact of nonwhite noise on the feature frequency extraction. The experimental results for the simulation and vibration signals of rolling bearings showed that the CEITDALN method could extract weak fault features more effectively than traditional methods.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Yuan ◽  
Yong Lv ◽  
Gangbing Song

Rolling bearings are vital components in rotary machinery, and their operating condition affects the entire mechanical systems. As one of the most important denoising methods for nonlinear systems, local projection (LP) denoising method can be used to reduce noise effectively. Afterwards, high-order polynomials are utilized to estimate the centroid of the neighborhood to better preserve complete geometry of attractors; thus, high-order local projection (HLP) can improve noise reduction performance. This paper proposed an adaptive high-order local projection (AHLP) denoising method in the field of fault diagnosis of rolling bearings to deal with different kinds of vibration signals of faulty rolling bearings. Optimal orders can be selected corresponding to vibration signals of outer ring fault (ORF) and inner ring fault (IRF) rolling bearings, because they have different nonlinear geometric structures. The vibration signal model of faulty rolling bearing is adopted in numerical simulations, and the characteristic frequencies of simulated signals can be well extracted by the proposed method. Furthermore, two kinds of experimental data have been processed in application researches, and fault frequencies of ORF and IRF rolling bearings can be both clearly extracted by the proposed method. The theoretical derivation, numerical simulations, and application research can indicate that the proposed novel approach is promising in the field of fault diagnosis of rolling bearing.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zong Yuan ◽  
Taotao Zhou ◽  
Jie Liu ◽  
Changhe Zhang ◽  
Yong Liu

The key to fault diagnosis of rotating machinery is to extract fault features effectively and select the appropriate classification algorithm. As a common signal decomposition method, the effect of wavelet packet decomposition (WPD) largely depends on the applicability of the wavelet basis function (WBF). In this paper, a novel fault diagnosis approach for rotating machinery based on feature importance ranking and selection is proposed. Firstly, a two-step principle is proposed to select the most suitable WBF for the vibration signal, based on which an optimized WPD (OWPD) method is proposed to decompose the vibration signal and extract the fault information in the frequency domain. Secondly, FE is utilized to extract fault features of the decomposed subsignals of OWPD. Thirdly, the categorical boosting (CatBoost) algorithm is introduced to rank the fault features by a certain strategy, and the optimal feature set is further utilized to identify and diagnose the fault types. A hybrid dataset of bearing and rotor faults and an actual dataset of the one-stage reduction gearbox are utilized for experimental verification. Experimental results indicate that the proposed approach can achieve higher fault diagnosis accuracy using fewer features under complex working conditions.


Sign in / Sign up

Export Citation Format

Share Document