scholarly journals A Fault Diagnosis Method Based on Improved Pattern Spectrum and FOA-SVM

2019 ◽  
Vol 24 (2) ◽  
pp. 312-319
Author(s):  
Dejian Sun ◽  
Bing Wang ◽  
Xiong Hu ◽  
Wei Wang

A fault diagnosis method using improved pattern spectrum (IP S) and F OA−SV M is proposed. Improved pattern spectrum is introduced for feature extraction by employing morphological erosion operator, and this feature is able to present fault information for roller bearing on different scales. Simulation analysis is processed and shows that, the value of IP S has a steady distinction among different fault types and the calculating amount is less than traditional method. After feature extraction, SV M with F OA, which can help with seeking optimal parameters, is employed for pattern recognition. Experiments were conducted, and the proposed method is verified by roller bearing vibration data including different fault types. The classification accuracy of the proposed approach on training is 87.5% ( 21 24 ) and reaches 91.7% ( 44 48 ) in a testing data set. The analysis shows that the method has a good diagnosis effect and an acceptable recognition result.

2021 ◽  
Author(s):  
Hao DeChen ◽  
HuaLing Li ◽  
JinYing Huang

Abstract Rotating machinery (RM) is one of the most common mechanical equipment in engineering applications and has a broad and vital role. Rotating machinery includes gearboxes, bearing motors, generators, etc. In industrial production, the important position of rotating machinery and its variable speed and complex working conditions lead to unstable vibration characteristics, which have become a research hotspot in mechanical fault diagnosis. Aiming at the multi-classification problem of rotating machinery with variable speed and complex working conditions, this paper proposes a fault diagnosis method based on the construction of improved sensitive mode matrix (ISMM), isometric mapping (ISOMAP) and Convolution-Vision Transformer network (CvT) structure. After overlapping and sampling the variable speed signals, a high-dimensional ISMM is constructed, and the ISMM is mapped into the manifold space through ISOMAP manifold learning. This method can extract the fault transient characteristics of the variable speed signal, and the experiment proves that it can solve the problem that the conventional method cannot effectively extract the characteristics of the variable speed data. CvT combines the advantages of self-attention mechanism and convolution in CNN, so the CvT network structure is used for feature extraction and fault recognition and classification. The CvT network structure takes into account both global feature extraction and local feature extraction, which greatly reduces the number of training iterations and the size of the network model. Two data sets (the HFXZ-I planetary gearbox variable speed data set in the laboratory and the bearing variable speed public data set of the University of Ottawa in Canada) are used to experimentally verify the proposed fault diagnosis model. Experimental results show that the proposed fault diagnosis model has good recognition accuracy and robustness.


2015 ◽  
Vol 724 ◽  
pp. 238-241
Author(s):  
Rui Pan ◽  
Tao Xu ◽  
Yong Liu

This paper studies the roller bearing fault diagnosis method with harmonic wavelet packet and Decision Tree-Support Vector Machine (DT-SVM). The harmonic wavelet packet possesses better performances for its box-shaped spectrum and unlimited subdivision compared with the conventional time-frequency feature exaction method. Firstly, the proposed method decomposes the roller bearing vibration signal with harmonic wavelet packet and extracts the feature energy with coefficients of each spectrum. After the feature energy is normalized, feature vector are available. Based on multi-level binary tree, this paper designs the multi-classification SVM model due to its superior nonlinear mapping capability. Three two-classifications are incorporated to diagnosis the roller bearing faults. Finally, the proposed method is illustrated with the vibration data from the roller bearing stand of electric engineering lab in case western reserve university. Experimental results illustrate the higher accuracy of the proposed method compared with conventional method.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881093 ◽  
Author(s):  
Bing Wang ◽  
Xiong Hu ◽  
Wei Wang ◽  
Dejian Sun

A fault diagnosis method using improved pattern spectrum and fruit fly optimization algorithm–support vector machine is proposed. Improved pattern spectrum is introduced for feature extraction by employing morphological erosion operator. Simulation analysis is processed, and the improved pattern spectrum curves present a steady distinction feature and smaller calculating amount than pattern spectrum method. Support vector machine with fruit fly optimization algorithm which can help seeking optimal parameters is employed for pattern recognition. Experiments were conducted, and the proposed method is verified by roller bearing vibration data including different fault types. The classification accuracy of the proposed approach reaches 87.5% (21/24) in training and 91.7% (44/48) in testing, showing an acceptable diagnosis effect.


2022 ◽  
pp. 1-11
Author(s):  
Qin Zhou ◽  
Zuqiang Su ◽  
Lanhui Liu ◽  
Xiaolin Hu ◽  
Jianhang Yu

This study presents a fault diagnosis method for rolling bearing based on multi-scale deep subdomain adaptation network (MSDSAN). The proposed MSDSAN, as improvement of deep subdomain adaptation network (DSAN), is an unsupervised transfer learning method. MSDSAN reduces the subdomain distribution discrepancy between domains rather than marginal distribution discrepancy, and so better domain invariant fault features are derived to avoid misalignment between domains. Aiming at avoiding fault information loss by fixed receptive fields feature extraction, selective kernel convolution module is introduced into feature extraction of MSDSAN, by which multiple receptive fields are applied to ensure an optimal receptive field for each working condition. Moreover, contribution rates are adaptively assigned to all receptive fields, and the disturbing information extracted by inappropriate receptive fields is further eliminated. As a result, more comprehensive and effective fault information is derived for bearing fault diagnosis. Fault diagnosis experiment of bearings is performed to verify the superiority of the proposed method, and the experimental results demonstrate that MSDSAN achieves better transfer effects and higher accuracy than SOTA methods under varying working conditions.


2014 ◽  
Vol 1014 ◽  
pp. 501-504 ◽  
Author(s):  
Shu Guo ◽  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Kun Li ◽  
...  

In order to discover the fault with roller bearing in time, a new fault diagnosis method based on Empirical mode decomposition (EMD) and BP neural network is put forward in the paper. First, we get the fault signal through experiments. Then we use EMD to decompose the vibration signal into a series of single signals. We can extract main fault information from the single signals. The kurtosis coefficient of the single signals forms a feature vector which is used as the input data of the BP neural network. The trained BP neural network can be used for fault identification. Through analyzing, BP neural network can distinguish the fault into normal state, inner race fault, outer race fault. The results show that this method can gain very stable classification performance and good computational efficiency.


2013 ◽  
Vol 470 ◽  
pp. 683-688
Author(s):  
Hai Yang Jiang ◽  
Hua Qing Wang ◽  
Peng Chen

This paper proposes a novel fault diagnosis method for rotating machinery based on symptom parameters and Bayesian Network. Non-dimensional symptom parameters in frequency domain calculated from vibration signals are defined for reflecting the features of vibration signals. In addition, sensitive evaluation method for selecting good non-dimensional symptom parameters using the method of discrimination index is also proposed for detecting and distinguishing faults in rotating machinery. Finally, the application example of diagnosis for a roller bearing by Bayesian Network is given. Diagnosis results show the methods proposed in this paper are effective.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-Li Qin ◽  
Wen-Jin Zhang ◽  
Zhen-Ya Wang

Roller bearings are one of the most commonly used components in rotational machines. The fault diagnosis of roller bearings thus plays an important role in ensuring the safe functioning of the mechanical systems. However, in most cases of bearing fault diagnosis, there are limited number of labeled data to achieve a proper fault diagnosis. Therefore, exploiting unlabeled data plus few labeled data, this paper proposed a roller bearing fault diagnosis method based on tritraining to improve roller bearing diagnosis performance. To overcome the noise brought by wrong labeling into the classifiers training process, the cut edge weight confidence is introduced into the diagnosis framework. Besides a small trick called suspect principle is adopted to avoid overfitting problem. The proposed method is validated in two independent roller bearing fault experiment vibrational signals that both include three types of faults: inner-ring fault, outer-ring fault, and rolling element fault. The results demonstrate the desirable diagnostic performance improvement by the proposed method in the extreme situation where there is only limited number of labeled data.


2014 ◽  
Vol 1014 ◽  
pp. 505-509 ◽  
Author(s):  
Ran Tao ◽  
You Cai Xu ◽  
Xin Shi Li ◽  
Shu Guo ◽  
Kun Li ◽  
...  

Empirical mode decomposition (EMD) can extract real time-frequency characteristics from the non-stationary and nonlinear signal. Variable prediction model based class discriminate (VPMCD) is introduced into roller bearing fault diagnosis in this paper. Therefore, a fault diagnosis method based on EMD and VPMCD is put forward in the paper. Firstly, the different feature vectors in the signal are extracted by EMD. Then, different fault models of roller bearing are distinguished by using VPMCD. Finally, an simulation example based on EMD and VPMCD is shown in this paper. The results show that this method can gain very stable classification performance and good computational efficiency.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7155
Author(s):  
Zejun Zheng ◽  
Dongli Song ◽  
Xiao Xu ◽  
Lei Lei

The axle box bearing of bogie is one of the key components of the rail transit train, which can ensure the rotary motion of wheelsets and make the wheelsets adapt to the conditions of uneven railways. At the same time, the axle box bearing also exposes most of the load of the car body. Long-time high-speed rotation and heavy load make the axle box bearing prone to failure. If the bearing failure occurs, it will greatly affect the safety of the train. Therefore, it is extremely important to monitor the health status of the axle box bearing. At present, the health status of the axle box bearing is mainly monitored by vibration information and temperature information. Compared with the temperature data, the vibration data can more easily detect the early fault of the bearing, and early warning of the bearing state can avoid the occurrence of serious fault in time. Therefore, this paper is based on the vibration data of the axle box bearing to carry out adaptive fault diagnosis of bearing. First, the AR model predictive filter is used to denoise the vibration signal of the bearing, and then the signal is whitened in the frequency domain. Finally, the characteristic value of vibration data is extracted by energy operator demodulation, and the fault type is determined by comparing with the theoretical value. Through the analysis of the constructed simulation signal data, the characteristic parameters of the data can be effectively extracted. The experimental data collected from the bearing testbed of high-speed train are analyzed and verified, which further proves the effectiveness of the feature extraction method proposed in this paper. Compared with other axle box bearing fault diagnosis methods, the innovation of the proposed method is that the signal is denoised twice by using AR filter and spectrum whitening, and the adaptive extraction of fault features is realized by using energy operator. At the same time, the steps of setting parameters in the process of feature extraction are avoided in other feature extraction methods, which improves the diagnostic efficiency and is conducive to use in online monitoring system.


Sign in / Sign up

Export Citation Format

Share Document