scholarly journals Solubility Enhancement of Poorly soluble Drugs by using Novel Techniques : A Comprehensive Review

2020 ◽  
Vol 13 (2) ◽  
pp. 80-93 ◽  
Author(s):  
Abikesh P.K. Mahapatra ◽  
Vinod Patil ◽  
Ravindra Patil

The primary aim of this review was to improve the solubility and Bioavailability of BCS Class-II drugs because of their low solubility and dissolution rate. Solubility is one of the imp parameter to achieve desired concentration of drug in systemic circulation for pharmacological response to be shown. Hence the class- II drugs require enhancement in solubility and dissolution rate in there formulation development particularly in solid dosage form such as in tablet and capsule. So because of this there are several methods and newer emerging technologies have been developed for increasing the solubility as well as Bioavailability of class –II drugs. In this article review on literature on newer techniques or methods as well as recent research on formulation development of class- II drugs was done.

2016 ◽  
Vol 2 (2) ◽  
pp. 91-95
Author(s):  
Neelima Rani T ◽  
Pavani A ◽  
Sobhita Rani P ◽  
Srilakshmi N

This study aims to formulate solid dispersions (SDs) of Simvastatin (SIM) to improve the aqueous solubility, dissolution rate and to facilitate faster onset of action. Simvastatin is a BCS class II drug having low solubility & therefore low oral bioavailability. In the present study, SDs of simvastatin different drug-carrier ratios were prepared by kneading method. The results showed that simvastatin solubility & dissolution rate enhanced with polymer SSG in the ratio 1:7 due to increase in wetting property or possibly may be due to change in crystallinity of the drug.


2020 ◽  
Vol 10 (4) ◽  
pp. 255-277
Author(s):  
Shashank Chaturvedi ◽  
Raghav Mishra

: Formulation development of BCS Class II and IV drugs is a challenging task due to their poor solubility and permeability issue. : An extensive literature survey was conducted to explore the relevant pharmaceutical approaches that have been used for solving the issue of poor solubility and permeability in the recent past. : It has been found that a plethora of approaches have been investigated for addressing the issue of poor solubility and or permeability. These include physical modifications (modification of crystal habit, particle size reduction, complexation, polymorphism and drug dispersion in carriers), chemical modifications (salt formation), and formulation modifications (Nanotechnology-based approaches and hydrotropy). : The physical and chemical modification approaches can be effectively used to enhance the solubility and dissolution rate of poorly soluble drugs, but the additional problem of poor permeability has been better addressed by lipid-based drug delivery systems. As the latter presents the drug in the solubilized state, bypass first-pass effects, circumvent the effect of Para-glycoprotein mediated efflux of drugs, hence contributing to overall bioavailability enhancement.


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 101 ◽  
Author(s):  
Michael Brunsteiner ◽  
Johannes Khinast ◽  
Amrit Paudel

Amorphous solid dispersions are considered a promising formulation strategy for the oral delivery of poorly soluble drugs. The limiting factor for the applicability of this approach is the physical (in)stability of the amorphous phase in solid samples. Minimizing the risk of reduced shelf life for a new drug by establishing a suitable excipient/polymer-type from first principles would be desirable to accelerate formulation development. Here, we perform Molecular Dynamics simulations to determine properties of blends of eight different polymer–small molecule drug combinations for which stability data are available from a consistent set of literature data. We calculate thermodynamic factors (mixing energies) as well as mobilities (diffusion rates and roto-vibrational fluctuations). We find that either of the two factors, mobility and energetics, can determine the relative stability of the amorphous form for a given drug. Which factor is rate limiting depends on physico-chemical properties of the drug and the excipients/polymers. The methods outlined here can be readily employed for an in silico pre-screening of different excipients for a given drug to establish a qualitative ranking of the expected relative stabilities, thereby accelerating and streamlining formulation development.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 996
Author(s):  
Zhengxuan Liang ◽  
Hongbo Chen ◽  
Chenguang Wang ◽  
Changquan Calvin Sun

Loratadine (Lor) is an antihistamine drug commonly used to relieve the symptoms of allergy. It has high permeability but low solubility under physiological conditions. To overcome the problem of low solubility, we synthesized and characterized two Loratadine multi-component crystalline phases with oxalic acid (Oxa), i.e., a 1:1 Lor-Oxa conjugate acid-base (CAB) cocrystal (Lor-Oxa CAB) and a 2:1 Lor-Oxa cocrystal monohydrate (Lor-Oxa hydrate). Both cocrystals exhibited an enhanced solubility and intrinsic dissolution rate (IDR) compared to Lor and adequate physical stability. The intrinsic dissolution rate of Lor-Oxa CAB is 95 times that of Lor, which makes it a promising candidate for tablet formulation development.


Author(s):  
R. Ravichandran

During the last ten years, the formulation of drugs as nanocrystals has rapidly evolved into a mature drug delivery strategy, with currently five products on the market. The major characteristic of these systems is the rapid dissolution velocity, enabling bioavailability enhancement after oral administration. This study describes the preparation of a solid dosage capsule form of spray-dried curcumin nanocrystal and compares its dissolution behavior with market capsule in different media. The aim was to obtain a stable nanocrystal loaded drug capsule with an increased drug saturation solubility and dissolution velocity. The solubility and dissolution experiments were performed to verify the obvious improvement of the dissolution behavior compared with commercial product. Improved dissolution behavior in drug nanocrystal-loaded solid dosage forms should lead to better bioavailability of poorly soluble drugs in the body.


2021 ◽  
Vol 11 (2) ◽  
pp. 23-30
Author(s):  
Anil Kumar ◽  
Umesh K. Jain ◽  
Ajay Patel

Lipospheres offer a new approach to improve an aqueous solubility of BCS class-II drugs. Simvastatin is a third generation fibric acid derivative belonging to this class, employed clinically as a hypolipidemic agent to lessen the risk caused by atherosclerosis. An attempt was made to improve aqueous solubility of Simvastatin by aid of stearic acid and Paraffin oil. The factorial batches of the Simvastatin lipospheres were formulated by melt dispersion technique using 32 factorial design with variables X1- concentration of stearic acid and X2- concentration of paraffin oil and responses Y1 - % Drug Entrapment (% DE) and Y2 - % Drug Release (% DR). From the surface response graphs the optimized batch was formulated and evaluated for saturation solubility, in-vitro drug release studies. Significant improvement in the aqueous solubility of the drug in the Simvastatin lipospheres supports the applicability of lipospheres as a tool for improving aqueous solubility of the BCS class-II drugs. Keywords: Linospheres; Simvastatin; Drug release; Hyperlipidemic; Drug entrapment.


2015 ◽  
Vol 6 (3) ◽  
pp. 288 ◽  
Author(s):  
Brahmaiah Bonthagarala ◽  
Pusuluri Dharani Lakshmi Sai ◽  
Venkata Sivaiah K. ◽  
Anil Kumar G. ◽  
B.Nageswara Rao ◽  
...  

2020 ◽  
Vol 17 (6) ◽  
pp. 470-482
Author(s):  
Mori Dhaval ◽  
Jalpa Makwana ◽  
Ekta Sakariya ◽  
Kiran Dudhat

Drug nanocrystals offer an attractive approach for improving the solubility and dissolution rate of poorly soluble drugs which accounts for nearly 40 % newly discovered drug molecules. Both methods for manufacturing drug nanocrystals have high industrial acceptability for being simple and easy to scale which is evident from the number of approved products available in the market. Ability to modify multiple aspects of dosage form like bioavailability, release pattern and dosage form requirement along with flexibility in choosing final dosage form starting from the tablet, capsule, suspension to parenteral one, have made nanocrystal technology one of the very promising and adaptable technology for dosage form design.


2022 ◽  
pp. 93-117
Author(s):  
Subramanian Natesan ◽  
Victor Hmingthansanga ◽  
Nidhi Singh ◽  
Pallab Datta ◽  
Sivakumar Manickam ◽  
...  

Administration of drugs through the oral route is considered the simplest and most convenient way to offer greater patient compliance than other routes. Most active drugs discovered in the past and those being discovered in recent times are inadequate because of their inherent limitations in physicochemical properties such as low solubility and permeability, resulting in poor bioavailability, especially after oral administration in the form of tablet or capsule. Pharmaceutical nanoemulsion is the most promising, safer, and multimodal technique for delivering poorly soluble drugs and gaining more attention due to its characteristics such as higher solubilisation capacity, smaller size, surface charge, and site-specific drug targeting. This chapter focuses on the biological fate of nanoemulsion after oral administration and a few case studies related to the oral application of nanoemulsion in delivering poorly soluble drugs. In addition, the anatomy and physiology of the GI tract, components of nanoemulsion, and methods of preparation are addressed.


Sign in / Sign up

Export Citation Format

Share Document