scholarly journals DINUCLEAR COPPER(II) ACETATE COMPLEX WITH CAFFEINE, A FAST MECHANOCHEMICAL SYNTHESIS

Author(s):  
Marina Tašner ◽  
Draginja Mrvoš-Sermek ◽  
Emina Hajdarpašić ◽  
Dubravka Matković-Čalogović

A new dinuclear paddle-wheel copper(II) complex with caffeine was synthesized by the solvent-based and mechanochemical methods from copper(II) acetate and caffeine in a 1:1 molar ratio. Mechanochemical synthesis was found to be the fastest and easiest way to prepare the complex. The reaction proceeds with addition of small amounts of methanol or ethanol. The complex was characterized by FT-IR spectroscopy, elemental and thermoanalytical methods (TG and DSC) and X-ray diffraction methods. The molecular and crystal structure was determined by the single crystal X-ray diffraction method. The complex molecule consists of a centrosymmetric dinuclear unit, Cu2(-Ac)4(caf)2, with two copper(II) atoms bridged by four acetato groups, and N-coordinated caffeine (caf) molecules in the apical posi-tions.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
K. Rajesh ◽  
B. Milton Boaz ◽  
P. Praveen Kumar

Single crystals of pure and Lanthanum doped L-Alanine Tartrate were grown by slow evaporation method. The cell parameters were determined using single crystal X-ray diffraction method. To improve the physical properties of the LAT crystal, Lanthanum dopant was added by 2 mol%. ICP studies confirm the presence of Lanthanum in the grown LAT crystal. Transparency range of the crystal was determined using UV-VIS-NIR spectrophotometer. The functional groups of pure and doped LAT crystals were analyzed by FT-IR spectroscopy. Using Vickers microhardness tester, mechanical strength of the material was found. Dielectric studies of pure and doped LAT single crystals were carried out. The doped LAT crystal is found to have efficiency higher than that of pure LAT crystal.


2016 ◽  
Vol 35 (5) ◽  
pp. 457-462 ◽  
Author(s):  
Mehdi Bazarganipour ◽  
Mahnaz Sahebi-Harandi ◽  
Masoud Salavati-Niasari

AbstractPosnjakite nanoparticles, Cu4SO4(OH)6 · H2O, were synthesized by utilizing a new thio-Schiff base ligand as new capping agent via a microwave approach. The effects of molar ratio, surfactants, heating time and microwave power on morphology of the product were investigated. The as-synthesized posnjakite nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and energy dispersive X-ray analysis (EDAX). The effects of different parameters such as the molar ratio, surfactants, microwave power and irradiation time on the morphology of the products were investigated. Moreover, adsorption of methylene orange dye on posnjakite nanoparticles was considered and the uptake percent was determined to be >65% in 200 min.


Author(s):  
Nehemiah Harris ◽  
Jubilee Benedict ◽  
Diane A. Dickie ◽  
Silvina Pagola

Quinine (an antimalarial) and aspirin (a nonsteroidal anti-inflammatory drug) were combined into a new drug–drug salt, quininium aspirinate, C20H25N2O2 +·C9H7O4 −, by liquid-assisted grinding using stoichiometric amounts of the reactants in a 1:1 molar ratio, and water, EtOH, toluene, or heptane as additives. A tetrahydrofuran (THF) solution of the mechanochemical product prepared using EtOH as additive led to a single crystal of the same material obtained by mechanochemistry, which was used for crystal structure determination at 100 K. Powder X-ray diffraction ruled out crystallographic phase transitions in the 100–295 K interval. Neat mechanical treatment (in a mortar and pestle, or in a ball mill at 20 or 30 Hz milling frequencies) gave rise to an amorphous phase, as shown by powder X-ray diffraction; however, FT–IR spectroscopy unambiguously indicates that a mechanochemical reaction has occurred. Neat milling the reactants at 10 and 15 Hz led to incomplete reactions. Thermogravimetry and differential scanning calorimetry indicate that the amorphous and crystalline mechanochemical products form glasses/supercooled liquids before melting, and do not recrystallize upon cooling. However, the amorphous material obtained by neat grinding crystallizes upon storage into the salt reported. The mechanochemical synthesis, crystal structure analysis, Hirshfeld surfaces, powder X-ray diffraction, thermogravimetry, differential scanning calorimetry, FT–IR spectroscopy, and aqueous solubility of quininium aspirinate are herein reported.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2018 ◽  
Vol 74 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Wen Cui ◽  
Ruyu Wang ◽  
Xi Shu ◽  
Yu Fan ◽  
Yang Liu ◽  
...  

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2-1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.


2020 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Azwan Morni

This study reports a green method for the synthesis of gold nanoparticles (AuNPs) using the aqueous extract of Salix aegyptiaca extract. The effects of gold salt concentration, extract concentration and extract quantity were investigated on nanoparticles synthesis. Novel methods of ideally synthesizing AuNPs are thus thought that are formed at ambient temperatures, neutral pH, low costs and environmentally friendly fashion. AuNPs were characterized with different techniques such as UV–vis spectroscopy, FT-IR spectroscopy, X-ray diffraction, and TEM. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary carbonyl group, -OH groups and other stabilizing functional groups. TEM experiments showed that these nanoparticles are formed with various shapes and X-ray diffraction pattern showed high purity and face centered cubic structure of AuNPs. For electrochemical properties of AuNPs, a modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated. The results show that electronic transmission rate between the modified electrode and [Fe (CN)6]3-/4- increased.


2019 ◽  
Vol 946 ◽  
pp. 351-356 ◽  
Author(s):  
Olga M. Kanunnikova ◽  
V.V. Aksenova ◽  
G.A. Dorofeev

The present work deals with the investigation of the transformations of the solid and liquid phases at high energy planetary ball milling of toluene together with titanium powder. The sequence of structural toluene transformations using FT-IR spectroscopy was investigated. Phase constitutions and morphology of ball milled titanium powders were studied by X-ray diffraction and scanning electron microscopy. It is shown that mechanically induced destruction of toluene occurs by the mechanism of catalytic cracking. During ball milling, concentration of aromatic hydrocarbons in the liquid phase decreases, at the same time the content of alkenes, cycloalkanes, and isoalkanes increases. The main solid products of the mechanosynthesis were cubic and hexagonal titanium carbo-hydrides.Evolution of lattice parameters, crystallites sizes, and micro-stresses of the solid phases during ball milling as a function of the mechanical energy dose have been discussed.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 409 ◽  
Author(s):  
Dandan Zhao ◽  
Wen-Can Huang ◽  
Na Guo ◽  
Shuye Zhang ◽  
Changhu Xue ◽  
...  

In this research, a two-step extraction approach was developed for chitin preparation from shrimp shells by utilizing citric acids and deep eutectic solvents (DESs), which effectively removed minerals and proteins. In the first step, minerals of shrimp shells were removed by citric acid, and the demineralization efficiency reached more than 98%. In the second step, the removal of protein was carried out using deep eutectic solvents with the assistance of microwave, and the deproteinization efficiency was more than 88%. The results of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), and thermogravimetric analysis (TGA) showed that the quality of DES-prepared chitin was comparable to that of traditional acid/alkali-prepared chitin. These results were realized without utilizing hazardous chemicals, which are detrimental to the environment. This research indicates that a DES-based preparation approach has the potential for application in the recovery of biopolymers from natural resources.


2019 ◽  
Vol 75 (7) ◽  
pp. 951-959 ◽  
Author(s):  
Zahra Mardani ◽  
Mohammad Hakimi ◽  
Keyvan Moeini ◽  
Fabian Mohr

The reaction between 2-[2-(aminoethyl)amino]ethanol and pyridine-2-carbaldehyde in a 1:2 molar ratio affords a mixture containing 2-({2-[(pyridin-2-ylmethylidene)amino]ethyl}amino)ethanol (PMAE) and 2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine (POPME). Treatment of this mixture with copper(II) chloride or cadmium(II) chloride gave trichlorido[(2-hydroxyethyl)({2-[(pyridin-2-ylmethylidene)amino]ethyl})azanium]copper(II) monohydrate, [Cu(C10H16N3O)Cl3]·H2O or [Cu(HPMAE)Cl3]·H2O, 1, and dichlorido{2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine}cadmium(II), [CdCl2(C16H18N4O)] or [CdCl2(POPME)], 2, which were characterized by elemental analysis, FT–IR, Raman and 1H NMR spectroscopy and single-crystal X-ray diffraction. PMAE is potentially a tetradentate N3O-donor ligand but coordinates to copper here as an N2 donor. In the structure of 1, the geometry around the Cu atom is distorted square pyramidal. In 2, the Cd atom has a distorted octahedral geometry. In addition to the hydrogen bonds, there are π–π stacking interactions between the pyridine rings in the crystal packing of 1 and 2. The ability of PMAE, POPME and 1 to interact with ten selected biomolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B-DNA) was investigated by docking studies and compared with doxorubicin.


2015 ◽  
Vol 71 (1) ◽  
pp. 48-52 ◽  
Author(s):  
José J. Campos-Gaxiola ◽  
Susana P. Arredondo Rea ◽  
Ramón Corral Higuera ◽  
Herbert Höpfl ◽  
Adriana Cruz Enríquez

Two organic–inorganic hybrid compounds have been prepared by the combination of the 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium cation with perhalometallate anions to give 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single-crystal X-ray diffraction analysis, showing the formation of a three-dimensional network throughX—H...ClnM−(X= C, N+;n= 1, 2;M= CoII, ZnII) hydrogen-bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).


Sign in / Sign up

Export Citation Format

Share Document