scholarly journals Effect of Auxins and Associated Metabolic Changes on Cuttings of Hybrid Aspen

Author(s):  
Shao Peng Yan ◽  
Rui Hua Yang ◽  
Fang Wang ◽  
Li Na Sun ◽  
Xing Shun Song

In the present study, an attempt was made to induce rooting from single-node cuttings of hybrid aspen (Populus tremula L. ×P. tremuloides Michx.) with different concentrations of IAA, IBA and NAA during rooting. Among the three auxins used, NAA showed more effective induction on rooting as compared to IAA and IBA at the whole level. Thereafter, NAA was used further in experiments for anatomical and biochemical investigation. The results showed that it took 12 days from the differentiation of primordium to the appearance of young adventitious roots with NAA application. It was found that endogenous IAA, ZR and GA3 levels increased, but ABA decreased in cuttings with 0.54 mM NAA treatment. In contrast to the endogenous IAA level, NAA had negative effect on IAA-oxidase (IAAO) activity. Similarly, the decreased peroxidase (POD) activity, consistent with down-regulation of expressed levels of POD1 and POD2, was observed in NAA-treated cuttings. Whereas, NAA resulted in a higher activity in polyphenol oxidase (PPO) compared to the control cuttings. Collectively, the study highlighted that 0.54 mM NAA is efficient on rooting in hybrid aspen, and its effect on metabolic changes during rooting is discussed, which provide valuable information for propagating hybrid aspen.

1975 ◽  
Vol 14 (5-6) ◽  
pp. 1255-1258 ◽  
Author(s):  
Hideaki Shinshi ◽  
Masao Noguchi

2005 ◽  
Vol 35 (11) ◽  
pp. 2671-2678 ◽  
Author(s):  
N Stenvall ◽  
T Haapala ◽  
S Aarlahti ◽  
P Pulkkinen

Root cuttings from five clones of hybrid aspen (Populus tremula L. × Populus tremuloides Michx.) obtained from 2-year-old stock plants were grown in a peat–sand mixture (soil) at four soil temperatures (18, 22, 26, and 30 °C). Half of the cuttings were grown in light and the rest in darkness. The root cuttings that were grown at the highest soil temperature sprouted and rooted significantly better than the cuttings grown at the lower temperatures. Light did not affect the sprouting of root cuttings but did have a negative effect on their rooting. Moreover, the clones varied significantly in sprouting and rooting percentages, as well as in the time required for sprouting. In general, higher soil temperatures hastened sprouting of the cuttings. Sprouting was also faster in the light than in the dark treatment. Differences in soil temperature, light conditions, or clone had no significant effect on rooting time.


2006 ◽  
Vol 203 (3) ◽  
pp. 755-766 ◽  
Author(s):  
Takashi Usui ◽  
Jan C. Preiss ◽  
Yuka Kanno ◽  
Zheng Ju Yao ◽  
Jay H. Bream ◽  
...  

T helper type 1 (Th1) development is facilitated by interrelated changes in key intracellular factors, particularly signal transducer and activator of transcription (STAT)4, T-bet, and GATA-3. Here we show that CD4+ cells from T-bet−/− mice are skewed toward Th2 differentiation by high endogenous GATA-3 levels but exhibit virtually normal Th1 differentiation provided that GATA-3 levels are regulated at an early stage by anti–interleukin (IL)-4 blockade of IL-4 receptor (R) signaling. In addition, under these conditions, Th1 cells from T-bet−/− mice manifest IFNG promotor accessibility as detected by histone acetylation and deoxyribonuclease I hypersensitivity. In related studies, we show that the negative effect of GATA-3 on Th1 differentiation in T-bet−/− cells arises from its ability to suppress STAT4 levels, because if this is prevented by a STAT4-expressing retrovirus, normal Th1 differentiation is observed. Finally, we show that retroviral T-bet expression in developing and established Th2 cells leads to down-regulation of GATA-3 levels. These findings lead to a model of T cell differentiation that holds that naive T cells tend toward Th2 differentiation through induction of GATA-3 and subsequent down-regulation of STAT4/IL-12Rβ2 chain unless GATA-3 levels or function is regulated by T-bet. Thus, the principal function of T-bet in developing Th1 cells is to negatively regulate GATA-3 rather than to positively regulate the IFNG gene.


2019 ◽  
Vol 60 (12) ◽  
pp. 2797-2811 ◽  
Author(s):  
Niveditha Umesh Katyayini ◽  
P�ivi L H Rinne ◽  
Christiaan van der Schoot

Abstract The biosynthesis and roles of strigolactones (SLs) have been investigated in herbaceous plants, but so far, their role in trees has received little attention. In this study, we analyzed the presence, spatial/temporal expression and role of SL pathway genes in Populus tremula � Populus tremuloides. In this proleptic species, axillary buds (AXBs) become para-dormant at the bud maturation point, providing an unambiguous starting point to study AXB activation. We identified previously undescribed Populus homologs of DWARF27 (D27), LATERAL BRANCHING OXIDOREDUCTASE (LBO) and DWARF53-like (D53-like) and analyzed the relative expression of all SL pathway genes in root tips and shoot tissues. We found that, although AXBs expressed MORE AXILLARY GROWTH1 (MAX1) and LBO, they did not express MAX3 and MAX4, whereas nodal bark expressed high levels of all SL biosynthesis genes. By contrast, expression of the SL perception and signaling genes MAX2, D14 and D53 was high in AXBs relative to nodal bark and roots. This suggests that AXBs are reliant on the associated nodes for the import of SLs and SL precursors. Activation of AXBs was initiated by decapitation and single-node isolation. This rapidly downregulated SL pathway genes downstream of MAX4, although later these genes were upregulated coincidently with primordia formation. GR24-feeding counteracted all activation-related changes in SL gene expression but did not prevent AXB outgrowth showing that SL is ineffective once AXBs are activated. The results indicate that nodes rather than roots supply SLs and its precursors to AXBs, and that SLs may restrain embryonic shoot elongation during AXB formation and para-dormancy in intact plants.


Forests ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 117 ◽  
Author(s):  
Shao Yan ◽  
Rui Yang ◽  
Fang Wang ◽  
Li Sun ◽  
Xing Song

2015 ◽  
Vol 55 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Navodit Goel ◽  
Prabir Kumar Paul

Abstract Tomato (Solanum lycopersicum L.) is attacked by Pseudomonas syringae pv. tomato causing heavy damage to the crops. The present study focused on the application of aqueous fruit extracts of neem (Azadirachta indica L.) on a single node of aseptically raised tomato plants. Observations were done, and the changes in the activity and isoenzyme profile of polyphenol oxidase (PPO) and lysozyme, both at the site of treatment as well as away from it, were noted. The results demonstrate that neem extract could significantly induce the activities of both the enzymes as well as upregulate the de novo expression of additional PPO isoenzymes. Induction of systemic acquired resistance (SAR) by natural plant extracts is a potent eco-friendly crop protection method.


Weed Science ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 594-604
Author(s):  
Alfredo Junior P. Albrecht ◽  
Ivana Paula F. S. de Brito ◽  
Leandro P. Albrecht ◽  
André Felipe M. Silva ◽  
Ana Karollyna A. de Matos ◽  
...  

AbstractThe transgenic Liberty Link® (LL) soybean is tolerant to glufosinate, conferred by the enzyme phosphinothricin acetyltransferase (PAT), which is encoded by the pat gene from Streptomyces viridochromogenes. Because symptoms of injury can be observed in soybean [Glycine max (L.) Merr.] plants in some situations, this study evaluated the effects of rates of glufosinate on agronomic performance; quality of LL soybean seeds; and the ammonia, glufosinate, and N-acetyl-l-glufosinate concentration (NAG) in soybeans with and without the pat gene after application of increasing glufosinate rates. Field and greenhouse experiments were conducted; the first evaluated the selectivity of glufosinate in LL soybeans, and the second evaluated the metabolic changes in soybeans with (LL) and without (RR2) the pat gene, after application of glufosinate. For fieldwork, application of glufosinate at rates up to four times the maximum recommended caused initial injury symptoms (up to 38.5%) in LL soybean plants. However, no negative effect was found on seed quality and agronomic performance of LL plants, including yield. This shows the selectivity of glufosinate promoted by pat gene insertion for application in POST (V4), in LL soybean. For the greenhouse experiment, it was concluded that the LL soybean plants presented high glufosinate metabolism, lower ammonia concentration, and no reduction in dry matter, in comparison with RR2 soybean, after application of high rates of glufosinate.


Sign in / Sign up

Export Citation Format

Share Document