scholarly journals Allometric Equations for Estimation of Biomass and Carbon Stocks in Temperate Forests of North-Western Mexico

Author(s):  
Benedicto Vargas-Larreta ◽  
Carlos Antonio López-Sánchez ◽  
José Javier Corral-Rivas ◽  
Jorge Omar López-Martínez ◽  
Cristóbal Gerardo Aguirre-Calderón ◽  
...  

This paper presents new above-ground biomass (AGB) and biomass components equations for seventeen forest species in the temperate forests of northwestern Mexico. A data set corresponding to 1336 destructively sampled oak and pine trees was used to fit the models. Generalized method of moments was used to simultaneously fit systems of equations for biomass components and AGB, to ensure additivity. Additionally, the carbon content of each tree component was calculated by the dry combustion method, in a TOC analyser. The fitted equations accounted for on average 91, 83, 84 and 78% of the observed variance in stem wood and stem bark, branch and foliage biomass, respectively, whereas the total AGB equations explained on average 93% of the total observed variance in AGB. The inclusion of h or d2h as additional predictor in the d-only based equations systems slightly improved estimates of stem wood, stem bark and total above-ground biomass, and greatly improved the estimates produced by the branch and foliage biomass equations. The fitted equations were used to estimate AGB stocks at stand level from a database on growing stock from 429 permanent sampling plots. Three machine-learning techniques were used to model the estimated stand level AGB and carbon contents; the selected models were applied to map the AGB and carbon distributions in the study area, which yielded mean values of 129.84 Mg ha-1 and 63.80 Mg ha-1, respectively.

1979 ◽  
Vol 27 (6) ◽  
pp. 725 ◽  
Author(s):  
HTL Stewart ◽  
DW Flinn ◽  
BC Aeberli

Eleven trees of Eucalyptus muellerana and 10 trees both of E. agglomerata and of E. sieberi growing in an uneven-aged mixed sclerophyll forest on duplex granitoid soils in eastern Victoria were felled, measured. separated into branch and stem components, sampled and weighed. Understorey vegetation and litter were also sampled for dry weight determination. Both linear and allometric regressions were developed for each species to predict branch and stem component dry weights from branch and tree dimensions. The predicted component weights for all branches on each tree were summed to estimate crown component dry weights, and regressions were then fitted for these crown component dry weights as functions of tree dimensions. Land area estimates of above-ground tree biomass were made by measuring tree diameters on sample plots. applying the appropriate regressions relating stem and crown component dry weights to tree diameter, and summing the predicted weights for each plot. The above-ground biomass of the forest ecosystem. which had a tree density of 123 stems per ha, was estimated to be 344.100 kg ha-1 of which 94.6% was in the forest overstorey. The proportions of each tree component in the overstorey were stem wood 60.1%, stem bark 15.8%. branch wood 16.5%, branch bark 3.9%, twigs 2.0%, and leaves 1.7%.


2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge O. López-Martínez ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationships between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. There is no general pattern regarding the relationship found in various studies, and positive, unimodal, negative, and neutral relationships keep the issue controversial. In this study, taxonomic diversity vs functional diversity as drivers of above-ground biomass were compared, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypoteses.Methods: Using data from 414 permanent sampling plots, covering 23% of temperate forests in the Sierra Madre Occiental (Mexico), we estimated the above-ground biomass (AGB) for trees ≥7.5 cm d.b.h. in managed and unmanaged stands. We evaluated AGB-diversity relationships (species richness, Shannon-Wiener and Simpson indices), AGB-weighted mean community values ​​(CWM) of tree species functional traits (maximum height, leaf size, and wood density) and five measures of functional diversity (functional dispersion, functional richness, functional uniformity, functional diversity, and RaoQ index).Results: We reveal a consistent hump-shaped relationship between aboveground biomass and species richness in managen and unmanaged forest. CWM_Hmax was the most important predictor of AGB in both managed and unmanaged stands, which suggests that the mechanism that explains the above-ground biomass in these ecosystems is dominated by certain highly productive species in accordance of the mass-ratio hypothesis. There were no significant relationships between taxonomic diversity metrics (Shannon-Wiener and Simpson indices) or measures of functional diversity with AGB. The results support the mass-ratio hypothesis to explain the AGB variations.Conclusions: We concluded that diversity does not influence biomass production in the temperate mixed-species and uneven-aged forests of northern Mexico. These forests showed the classic hump-shaped productivity-species richness relationship, with biomass accumulation increasing at low to intermediate levels of species plant diversity and decreasing at high species richness. Functional diversity explains better forest productivity than classical diversity metrics.


2014 ◽  
Vol 23 (6) ◽  
pp. 872 ◽  
Author(s):  
Elena A. Kukavskaya ◽  
Galina A. Ivanova ◽  
Susan G. Conard ◽  
Douglas J. McRae ◽  
Valery A. Ivanov

In 2000–2002 nine 4-ha prescribed fires of various severities were conducted on experimental plots in mature Scots pine forest in the central Siberian taiga, Russia. Total above-ground living biomass decreased after low- and moderate-severity fires by 10 and 15%, whereas high-severity fire reduced living above-ground biomass by 83%. We monitored changes in fuel structure and biomass for 6–8 years following these fires. By 6–8 years after burning the ground fuel loading had recovered to 101, 96 and 82% of pre-fire levels after fires of low-, moderate- and high-severity. Down woody fuel loading increased by 0.18±0.04kgm–2year–1. We developed regressions relating time since fire to changes in above-ground biomass components for fires of different severity for feather moss–lichen Scots pine forest of Siberia. Our results demonstrate the importance of both burn severity and composition of pre-fire surface vegetation in determining rates and patterns of post-fire vegetation recovery on dry Scots pine sites in central Siberia.


Forests ◽  
2013 ◽  
Vol 4 (4) ◽  
pp. 984-1002 ◽  
Author(s):  
Qisheng He ◽  
Erxue Chen ◽  
Ru An ◽  
Yong Li

2016 ◽  
Vol 140 (11-12) ◽  
pp. 567-576 ◽  
Author(s):  
Turan Sönmez ◽  
Mehmet Yavuz ◽  
Abdurrahman Şahin ◽  
Aydin Karhiman

The aim of this study was to develop allometric equations for the estimation of above-ground biomass components of Calabrian pine (Pinus brutia Ten.) tree in the Mediterranean Region of Turkey. Using regression analysis, different allometric equations were fitted for the tree components of the above-ground biomass using diameter at breast height (dbh) and tree height as estimators. Two hundred and ninety-two trees between 0.4 and 63.0 cm in dbh were randomly sampled throughout 292 natural, pure Calabrian pine stands in Turkey’s Mediterranean Region, where it forms diverse stand structures. Finally, the allometric equations were developed for the tree components of the Calabrian pine tree for the stem, bark, branch, needle and total above-ground biomass. The stem, bark and total biomass equations explained more than 90% of the observed variability, while the branch and needle biomass equations explained 82% and 65%, respectively.


2018 ◽  
Vol 15 (14) ◽  
pp. 4627-4645 ◽  
Author(s):  
Nemesio J. Rodríguez-Fernández ◽  
Arnaud Mialon ◽  
Stephane Mermoz ◽  
Alexandre Bouvet ◽  
Philippe Richaume ◽  
...  

Abstract. The vegetation optical depth (VOD) measured at microwave frequencies is related to the vegetation water content and provides information complementary to visible/infrared vegetation indices. This study is devoted to the characterization of a new VOD data set obtained from SMOS (Soil Moisture and Ocean Salinity) satellite observations at L-band (1.4 GHz). Three different SMOS L-band VOD (L-VOD) data sets (SMOS level 2, level 3 and SMOS-IC) were compared with data sets on tree height, visible/infrared indexes (NDVI, EVI), mean annual precipitation and above-ground biomass (AGB) for the African continent. For all relationships, SMOS-IC showed the lowest dispersion and highest correlation. Overall, we found a strong (R > 0.85) correlation with no clear sign of saturation between L-VOD and four AGB data sets. The relationships between L-VOD and the AGB data sets were linear per land cover class but with a changing slope depending on the class type, which makes it a global non-linear relationship. In contrast, the relationship linking L-VOD to tree height (R = 0.87) was close to linear. For vegetation classes other than evergreen broadleaf forest, the annual mean of L-VOD spans a range from 0 to 0.7 and it is linearly correlated with the average annual precipitation. SMOS L-VOD showed higher sensitivity to AGB compared to NDVI and K/X/C-VOD (VOD measured at 19, 10.7 and 6.9 GHz). The results showed that, although the spatial resolution of L-VOD is coarse ( ∼ 40 km), the high temporal frequency and sensitivity to AGB makes SMOS L-VOD a very promising indicator for large-scale monitoring of the vegetation status, in particular biomass.


2014 ◽  
Vol 5 (1) ◽  
pp. 83-120 ◽  
Author(s):  
Z. Yin ◽  
S. C. Dekker ◽  
B. J. J. M. van den Hurk ◽  
H. A. Dijkstra

Abstract. Multiple states of woody cover under similar climate conditions are found in both conceptual models and observations. Due to the limitation of the observed woody cover data set, it is unclear whether the observed bimodality is caused by the presence of multiple stable states or is due to dynamic growth processes of vegetation. In this study, we combine a woody cover data set with an above ground biomass data set to investigate the simultaneous occurrences of savanna and forest states under different precipitation forcing. To interpret the results we use a recently developed vegetation dynamics model (the Balanced Optimality Structure Vegetation Model), in which the effect of fires is included. Our results show that bimodality also exists in above ground biomass and retrieved vegetation structure. In addition, the observed savanna distribution can be understood as derived from a stable state and a slightly drifting (transient) state, the latter having the potential to shift to the forest state. Finally, the results indicate that vegetation structure (horizontal vs. vertical leaf extent) is a crucial component for the existence of bimodality.


FLORESTA ◽  
2010 ◽  
Vol 40 (4) ◽  
Author(s):  
Saulo Jorge Téo ◽  
Sebastião Do Amaral Machado ◽  
Carlos Bruno Reissmann ◽  
Afonso Figueiredo Filho

Esta pesquisa teve como objetivo quantificar e analisar as concentrações e conteúdos de micronutrientes da biomassa aérea de bracatinga sob diferentes classes de sítio, idade e diâmetro, na região metropolitana de Curitiba, Estado do Paraná. Foram amostradas 25 árvores em diversas localidades da área de estudo, as quais foram separadas nos seguintes compartimentos da biomassa: folhas, galhos < 4 cm, galhos ≥ 4 cm, madeira e casca do fuste. Após o levantamento de biomassa no campo, amostras foram levadas para o laboratório para a determinação do peso da massa seca e dos micronutrientes. As árvores foram agrupadas por classe de sítio, de idade e de diâmetro, as quais constituíram os tratamentos de um delineamento estatístico inteiramente casualizado. De acordo com os resultados, as concentrações de micronutrientes assumiram a seguinte ordem decrescente: Mn > Fe > Cu > Zn. O compartimento da biomassa aérea que apresentou as maiores quantidades de micronutrientes foi a madeira. As concentrações de micronutrientes não apresentaram tendências claras de aumento ou diminuição com nenhum dos fatores analisados. Somente os diâmetros exerceram efeitos significativos e consistentes sobre os conteúdos de micronutrientes da biomassa aérea de bracatinga na região metropolitana de Curitiba.Palavras-chave: Mimosa scabrella; nutrientes; ciclagem de nutrientes; biomassa. AbstractMicronutrients of above-ground bracatinga biomass under different sites, ages and diameter classes.The aims of this research were to quantify and analyze the micronutrient concentration and content of Mimosa scabrella above-ground biomass under different sites, ages and diameter classes, in Curitiba metropolitan region, Paraná State, Brazil. Twenty five trees were sampled in several localities of the study area, which were separated in different biomass components, as follow: leaves, twigs, branches, stem wood and bark. After the biomass survey in the field, samples of each tree component were carried out to the laboratory for dry weight and micronutrient determination. The trees were grouped by site, age and diameter classes, which constituted the treatments of a completely random statistical design. According to the results, the micronutrient concentrations assumed a decreasing order as follow: Mn > Fe > Cu > Zn. The stem wood presented the highest quantity of micronutrient, considering the tree above-ground biomass. The micronutrient concentrations didn’t present clear tendencies according to site, age and diameter classes. Only the diameter classes had exerted significant and coherent effects on the micronutrient contents of the studied species.Keywords: Mimosa scabrella; nutrients; nutrient cycling; biomass.


Sign in / Sign up

Export Citation Format

Share Document