scholarly journals 3D Pharmacophore-based Virtual Screening, Docking Approaches toward the Discovery of Novel HPPD Inhibitors

Author(s):  
Ying Fu ◽  
Yi-Na Sun ◽  
Ke-Han Yi ◽  
Ming-Qiang Li ◽  
Hai-feng Cao ◽  
...  

p-Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides. A combined in silico structure-based pharmacophore and molecular docking based virtual screening were performed to identify novel potential HPPD inhibitors. The complex based pharmacophore model (CBP) with 0.721 of ROC used for screening compound showed remarkable ability to retrieve known active ligands from decoy molecule. The ChemDiv database was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5(DS 2.5) to discern interactions with key residues at the active site of HPPD. 4 Compounds with top rank in HipHop model and well-known binding model were finally chosen as identification of lead compounds with potentially inhibitory effects on active site of target. The results provided powerful insight to the development of novel HPPD inhibitors herbicides using computational techniques.

2020 ◽  
Author(s):  
Zizhong Tang ◽  
Lu Huang ◽  
Xiaoli Fu ◽  
Haoxiang Wang ◽  
Biao Tang ◽  
...  

Abstract The FGF/FGFR system may affect tumor cells and stromal microenvironment through autocrine and paracrine stimulation, thereby significantly promoting oncogene transformation and tumor growth. Abnormal expression of FGFR1 in cells is considered to be the main cause of tumorigenesis and a potential target for the treatment of cancer. In this study, a combination of structure-based drug carriers and molecular docking-based virtual screening was used to screen new potential FGFR1 inhibitors. Twenty-one known inhibitors were collected as training sets to establish a 3D-QSAR pharmacophore model, and cost analysis, test set validation, and Fischer randomization test were used to validate the efficiency of the pharmacophore model. In Accelrys Discovery Studio 2016, the zinc database was filtered by Lipinski's Rule of Five and SMART's filtration. Then, Hypo01 was used for virtual screening of ZINC database. Compounds with predicted activity values less than 1 μM were molecularly docked with FGFR1 protein crystals, the docking results were observed, and the interaction between compounds and targets was studied. The absorption, distribution, metabolism and excretion (ADME) and toxicity of potential inhibitors were studied, and a compound with new structural scaffolds were obtained. It could be further studied to explore their better therapeutic effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Firoz A. Dain Md Opo ◽  
Mohammed M. Rahman ◽  
Foysal Ahammad ◽  
Istiak Ahmed ◽  
Mohiuddin Ahmed Bhuiyan ◽  
...  

AbstractX-linked inhibitor of apoptosis protein (XIAP) is a member of inhibitor of apoptosis protein (IAP) family responsible for neutralizing the caspases-3, caspases-7, and caspases-9. Overexpression of the protein decreased the apoptosis process in the cell and resulting development of cancer. Different types of XIAP antagonists are generally used to repair the defective apoptosis process that can eliminate carcinoma from living bodies. The chemically synthesis compounds discovered till now as XIAP inhibitors exhibiting side effects, which is making difficulties during the treatment of chemotherapy. So, the study has design to identifying new natural compounds that are able to induce apoptosis by freeing up caspases and will be low toxic. To identify natural compound, a structure-based pharmacophore model to the protein active site cavity was generated following by virtual screening, molecular docking and molecular dynamics (MD) simulation. Initially, seven hit compounds were retrieved and based on molecular docking approach four compounds has chosen for further evaluation. To confirm stability of the selected drug candidate to the target protein the MD simulation approach were employed, which confirmed stability of the three compounds. Based on the finding, three newly obtained compounds namely Caucasicoside A (ZINC77257307), Polygalaxanthone III (ZINC247950187), and MCULE-9896837409 (ZINC107434573) may serve as lead compounds to fight against the treatment of XIAP related cancer, although further evaluation through wet lab is necessary to measure the efficacy of the compounds.


2019 ◽  
Author(s):  
Edward A. Valera-Vera ◽  
Melisa Sayé ◽  
Chantal Reigada ◽  
Mariana R. Miranda ◽  
Claudio A. Pereira

AbstractEnolase is a glycolytic enzyme that catalyzes the interconversion between 2-phosphoglycerate and phosphoenolpyruvate. In trypanosomatids enolase was proposed as a key enzyme afterin silicoandin vivoanalysis and it was validated as a protein essential for the survival of the parasite. Therefore, enolase constitutes an interesting enzyme target for the identification of drugs against Chagas disease. In this work, a combined virtual screening strategy was implemented, employing similarity virtual screening, molecular docking and molecular dynamics. First, two known enolase inhibitors and the enzyme substrates were used as queries for the similarity screening on the Sweetlead database using five different algorithms. Compounds retrieved in the top 10 of at least three search algorithms were selected for further analysis, resulting in six compounds of medical use (etidronate, pamidronate, fosfomycin, acetohydroximate, triclofos, and aminohydroxybutyrate). Molecular docking simulations predicted acetohydroxamate and triclofos would not bind to the active site of the enzyme, and a re-scoring of the obtained poses signaled fosfomycin and aminohydroxybutyrate as bad enzyme binders. Docking poses obtained for etidronate, pamidronate, and PEP, were used for molecular dynamics calculations to describe their mode of binding. From the obtained results, we propose etidronate as a possibleTcENO inhibitor, and describe desirable and undesirable molecular motifs to be taken into account in the repurposing or design of drugs aiming this enzyme active site.


Author(s):  
Fatemeh Sadat Hosseini ◽  
Mohammad Reza Motamedi

Background: At the onset of the 2020 year, Coronavirus disease (COVID-19) has become a pandemic and infected many people worldwide. Despite all efforts, no cure was found for this infection. Bioinformatics and medicinal chemistry have a potential role in the primary consideration of drugs to treat this infection. With virtual screening and molecular docking, some potent compounds and medications can be found and modified and then applied to treat disease in the next steps. Methods: By virtual screening method and PRYX software, some Food and Drug Administration (FDA) approved drugs and natural compounds have been docked with the SPIKE protein of SARS-CoV-2. Some more potent agents have been selected, and then new structures are designed with better affinity than them. After that, we searched for the molecules with a similar structure to designed compounds to find the most potent compound to our target. Results: Because of the study of structures and affinities, mulberrofuran G was the most potent compound in this study. The compound has interacted strongly with residues in the probably active site of SPIKE. Conclusion: Mulberrofuran G can be a treatment agent candidate for COVID-19 because of its good affinity to SPIKE of the virus and inhibition of virus-cell adhesion and entrance.


Author(s):  
Zarrin Basharat ◽  
Monazza Bibi ◽  
Azra Yasmin

Bioremediation utilizes microbes to control environmental pollution, primarily through diverse enzymatic processes. With the incorporation of computation in biological experimentation, bioremediation has also been influenced by computational techniques. Molecular docking assay is one such pedestal of computational assisted bioremediation, which has been elaborated in this chapter. It helps in inferring whether the active site accommodate the pollutant molecules or not, depending on the stearic hindrance of the residues and nature of the active site pocket. The spotting of consequential active site residues and binding characteristics of compounds under study can conceivably be employed for site-directed mutagenic testing. From a vantage point, no one had expected such a remarkable usefulness of molecular docking assay for environmental research. Positive shades of low cost and efficiency, combined with eco-friendliness have made it a valuable method for analyzing biodegradative properties of enzymes responsible for pollution remediation.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Naresh Kandakatla ◽  
Geetha Ramakrishnan

Histone deacetylases 2 (HDAC2), Class I histone deacetylase (HDAC) family, emerged as an important therapeutic target for the treatment of various cancers. A total of 48 inhibitors of two different chemotypes were used to generate pharmacophore model using 3D QSAR pharmacophore generation (HypoGen algorithm) module in Discovery Studio. The best HypoGen model consists of four pharmacophore features namely, one hydrogen bond acceptor (HBA), and one hydrogen donor (HBD), one hydrophobic (HYP) and one aromatic centres, (RA). This model was validated against 20 test set compounds and this model was utilized as a 3D query for virtual screening to validate against NCI and Maybridge database and the hits further screened by Lipinski’s rule of 5, and a total of 382 hit compounds from NCI and 243 hit compounds from Maybridge were found and were subjected to molecular docking in the active site of HDAC2 (PDB: 3MAX). Finally eight hit compounds, NSC108392, NSC127064, NSC110782, and NSC748337 from NCI database and MFCD01935795, MFCD00830779, MFCD00661790, and MFCD00124221 from Maybridge database, were considered as novel potential HDAC2 inhibitors.


2020 ◽  
Author(s):  
Anurag Agrawal ◽  
Nem Kumar Jain ◽  
Neeraj Kumar ◽  
Giriraj T Kulkarni

This study belongs to identification of suitable COVID-19 inhibitors<br><div><br></div><div>Coronavirus became pandemic very soon and is a potential threat to human lives across the globe. No approved drug is currently available therefore an urgent need has been developed for any antiviral therapy for COVID-19. For the molecular docking study, ten herbal molecules have been included in the current study. The three-dimensional chemical structures of molecules were prepared through ChemSketch 2015 freeware. Molecular docking study was performed using AutoDock 4.2 simulator and Discovery studio 4.5 was employed to predict the active site of target enzyme. Result indicated that all-natural molecules found in the active site of enzyme after molecular docking. Oxyacanthine and Hypericin (-10.990 and -9.05 and kcal/mol respectively) have shown good binding efficacy among others but Oxyacanthine was the only natural product which made some of necessary interactions with residues in the enzyme require for target inhibition. Therefore Oxyacanthine may be considered to be potential inhibitor of main protease enzyme of virus but need to be explored for further drug development process. <br></div>


2021 ◽  
Vol 22 (24) ◽  
pp. 13423
Author(s):  
Ni Made Pitri Susanti ◽  
Sophi Damayanti ◽  
Rahmana Emran Kartasasmita ◽  
Daryono Hadi Tjahjono

The G1 phase of cell cycle progression is regulated by Cyclin-Dependent Kinase 4 (CDK4) as well as Cyclin-Dependent Kinase 6 (CDK6), and the acivities of these enzymes are regulated by the catalytic subunit, cyclin D. Cell cycle control through selective pharmacological inhibition of CDK4/6 has proven to be beneficial in the treatment of estrogen receptor-positive (ER-positive) breast cancer, particularly improving the progression-free survival of patients. Thus, targeting specific inhibition on CDK4/6 is bound to increase therapeutic efficiency. This study aimed to obtain CDK4/6 inhibitors through a pharmacophore-based virtual screening of the ZINC15 purchasable compound database using the in silico method. The pharmacophore model was designed based on the FDA-approved cdk4/6 inhibitor structures, and molecular docking was performed to further screen the hit compounds obtained. A total of eight compounds were selected based on docking results and interactions with CDK4 and CDK6, using palbociclib as the reference drug. According to the results, the compounds of ZINC585292724 and ZINC585291674 were the best compounds based on free binding energy, as well as hydrogen bond stability, and, therefore, exhibit potential as starting points in the development of CDK4/6 inhibitors.


2021 ◽  
Author(s):  
Revanth Bathula ◽  
Sree kanth Sivan ◽  
Gururaj Somadi ◽  
Narasimha Muddagoni ◽  
Goverdhan Lanka ◽  
...  

Abstract Protein arginine methyltransferase 5 (PRMT5) is a member of the methyltransferases family, a type II arginine enzyme that is crucial for many cellular processes and is associated with many cancer diseases. In this study, pharmacophore-based 3D QSAR modeling, virtual screening and binding free energy studies were carried out from a set of 61 potent compounds reported being inhibitors of PRMT5 protein. A five-point pharmacophore model (AADHR) was generated and this model is used to generate an atom-based 3-Dimensional quantitative structure-activity relationship (3D-QSAR). The obtained 3D-QSAR model has high correlation coefficient (R2 = 0.91), cross-validation coefficient (Q2 = 0.82), F value (140.3), low RMSE (0.47) and pearson R-value (0.91). A library of 329825 molecules (ChEMBL database) is screened with pharmacophore model to retrieve hit molecules that are further subjected for molecular docking to identify best fit-active conformations binding at the receptor site of PRMT5 protein. Further, we are calculated ADME and toxicity properties using QikProp module and pkCSM server and finally prioritized the lead molecules by binding free energy prediction.


Sign in / Sign up

Export Citation Format

Share Document