Handbook of Research on Inventive Bioremediation Techniques - Advances in Environmental Engineering and Green Technologies
Latest Publications


TOTAL DOCUMENTS

20
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By IGI Global

9781522523253, 9781522523260

Author(s):  
Alka Bali

The astounding increase in the use of pharmaceuticals in the last decade has raised concerns over their occurrence in the soils and wastewaters posing potential dangers to the general public health and environment. Considering the limitations of chemical remediation measures in treatment of recalcitrant xenobiotics, several bioremediation measures are being currently investigated and proposed for removal of pharmaceutical contaminants from the environment. Several bacterial, fungal and plant species have shown promising bioremediation potential with regard to the removal of pharmaceuticals. Varying configurations of anaerobic and aerobic reactors have been utilized for pharmaceutical wastewater treatment. This chapter is intended to give a compilation and overview of the various types of bioremediation measures currently being employed or investigated to remove the pharmaceutical pollutants.


Author(s):  
Manoj Balachandran

The potential use of coal as source of carbon nano structure is seldom investigated. Herein we report a facile fungal solubilization method to extract mixed phase carbon structure from low grade coal. Coal had been used as a primary source for the production of carbon nanostructure with novel property, in addition to its main utility as a fuel. The major hurdle in its application is the inherent mineral embedded in it. An environmentally benign demineralization procedure make coal as a widely accepted precursor for the novel carbon materials. With Aspergiilus niger leaching, the randomly oriented preformed crystalline mixed phase nanocarbon in coal can be extracted. Raman studies revealed the presence of E2g scattering mode of graphite. The sp3 domains at ~1355 cm-1 (D band) is an indication of diamond like structure with disorder or defect. In the 2D region, multilayer stacking of graphene layers is noticed. The ratio of the defect to graphitic bands was found to be decreasing with increasing rank of coal. Bio leaching of coal enhances the carbon content in coal while eliminating the associated minerals in it. These defected carbon is an ideal material for graphene quantum dots and carbon dots, which are useful in drug delivery and bio imaging applications.


Author(s):  
Raghvendra Pratap Singh ◽  
Geetanjali Manchanda ◽  
Zhi-Feng Li ◽  
Alok R. Rai

Bioremediation of hazardous substances from environment is a major human and environmental health concern but can be managed by the microorganism due to their variety of properties that can effectively change the complexity. Microorganisms convey endogenous genetic, biochemical and physiological assets that make them superlative proxies for pollutant remediation in habitat. But, the crucial step is to degrade the complex ring structured pollutants. Interestingly, the integration of genomics and proteomics technologies that allow us to use or alter the genes and proteins of interest in a given microorganism towards a cell-free bioremediation approach. Resultantly, efforts have been finished by developing the genetically modified (Gm) microbes for the remediation of ecological contaminants. Gm microorganisms mediated bioremediation can affect the solubility, bioavailability and mobility of complex hazardous.


Author(s):  
Zarrin Basharat ◽  
Monazza Bibi ◽  
Azra Yasmin

Bioremediation utilizes microbes to control environmental pollution, primarily through diverse enzymatic processes. With the incorporation of computation in biological experimentation, bioremediation has also been influenced by computational techniques. Molecular docking assay is one such pedestal of computational assisted bioremediation, which has been elaborated in this chapter. It helps in inferring whether the active site accommodate the pollutant molecules or not, depending on the stearic hindrance of the residues and nature of the active site pocket. The spotting of consequential active site residues and binding characteristics of compounds under study can conceivably be employed for site-directed mutagenic testing. From a vantage point, no one had expected such a remarkable usefulness of molecular docking assay for environmental research. Positive shades of low cost and efficiency, combined with eco-friendliness have made it a valuable method for analyzing biodegradative properties of enzymes responsible for pollution remediation.


Author(s):  
Veena Gayathri Krishnaswamy

Environmental pollution has been an irrefutable fact of life for many centuries; but it has become a real problem, since the start of the industrial revolution. Discharge of these toxic compounds without treatment results in serious health risks to humans and the marine ecosystem. Several physical, chemical and biological methods have been employed for the remediation of the phenolics. Bioremediation is identified as the most efficient, cost effective and eco-friendly ways for treatment of phenolic compounds. This article is a comprehensive review on the sources of phenolic compounds, their hazards, and their fate once released into the environment; the treatment technologies employed and bioremediation of these compounds using both non-extremophlic and extremophilic organisms. The review, throws light on the enzymes involved in the remediation of phenolic compounds, highlights the importance of extremophilic organisms and biological treatment of phenol containing industrial wastewaters. Such comprehensive information on the research work performed for the remediation of phenolic compounds provide ways to explore the role played by micro organisms in the remediation of phenolic compounds, which could be applied in the remediation of phenol /contaminated sites even under extreme conditions.


Author(s):  
Shivani Garg

Growth of agriculture and manufacturing industries has resulted in increased a wide range of complex and hazardous compounds to the environment. Excess growth of hazardous waste has led to reduce availability of clean water and disturbances of soil thus limiting crop production. Waste generated from different sources like Industrial, domestic and agricultural etc. having different kinds of chemical compound i.e. organic or inorganic. Traditional methods are not able to deal with some of these chemical compounds. Bioremediation process is good option in such environmental problems. Bioremediation provides a technique for cleaning up pollution by enhancing the natural biodegradation processes. It treats such waste with the help of microorganism. Number of microbes including aerobes, anaerobic and fungi are involved in bioremediation process. Specific types of microbes are used to treat specific type of chemical contaminant. The chapter include all the techniques of bioremediation used to treat different kinds of contaminant.


Author(s):  
Saritha Vara

The most abundant aromatic biopolymer on earth Lignin is extremely recalcitrant to degradation. It creates a barrier to solutions or enzymes by linking to both hemicellulose and cellulose preventing the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Global attention has been gained by fungi owing to the potential use of their versatile enzymes for agriculture, medicines, industries and bioremediation. The combination of extracellular ligninolytic enzymes, mediators, organic acids and accessory enzymes make some of the basidiomycete white-rot fungi to be able to degrade lignin efficiently. This review describes remediation of lignocelluloses by fungi, properties of fungi, their spatial distribution and the mechanisms of action which render them attractive candidates in biotechnological applications like biopulping, animal feed, genetic engineering and space exploration.


Author(s):  
Sunil Kumar Narwal ◽  
Reena Gupta

The continuous accumulation of recalcitrant xenobiotic compounds into the ecosystem released from various sources caused a serious global concern. Xenobiotics compounds are carcinogenic, mutagenic, causing teratogenic effect and persist over a long period of time in the environment. Therefore there is an urgent need for the detoxification of these compounds. Biodegradation is a technique that employs natural biological processes to completely degrade toxic contaminants from the environment. The microorganisms possess a wide range of catabolic biodegradation pathways and, thus, use these toxic xenobiotics as the sole source of carbon and energy. Bacteria and fungi are source of xenobiotic degradation. For the development of successful and improved bioremediation processes, understanding of the biochemical and molecular aspects of xenobiotics biodegradation is required. The chapter aims to provide an overview of xenobiotic compounds, factors affecting biodegradation, the metabolic pathways and genetic adaptation in microorganisms for degradation of recalcitrant xenobiotic compounds.


Author(s):  
Abdullah Mohammed El Mahdi ◽  
Hamidi Abdul Aziz

The diversity of agro industrial wastes makes them an attractive group of organic wastes for potential use in a wide variety of industrial and biotechnological applications. The new stimulating development in this current area of research approaches in combination with the technologies of large-scale production and biotechnology engineering, agro industrial wastes will be economically successful materials of the future. Increased public awareness of issues related to hydrocarbon pollution strongly influences the development of technologies that speed up cleaning hazardous contaminants. The cost of biodegradation technology and the low bioavailability including mass transfer limitations of hydrocarbons, especially those recalcitrant components, from various mediums into the aqueous phase for effective enzyme-based microbial biodegradation still constitute major challenges. Sustainable replacement of traditional microbiological media with agroindustrial wastes as substrates for biosurfactant production holds great potential; thereby decrease numerous management problems of handling industrial waste. These organic nitrogen-rich nutrients (biostimulation) are an effective means to enhance the bioremediation process and widely available as wastes in the environment; hence, they can serve as “natural waste-to-environmental clean-up.” However, current chapter have focused on the combined use of biosurfactants and enzymes produced from renewable resources such as agro-industrial waste, through assisted biostimulation and bioaugmentation, for hydrocarbon biodegradation.


Author(s):  
Mostafa M. El-Sheekh ◽  
Yehia A-G. Mahmoud

Bioremediation is applied to eliminate various contaminants, such as organic, inorganic or other pollutants from the environment. Environment worldwide is under great stress due to industrialization and human interfering on the limited natural resources. The release of chemicals pollution needs several techniques to treat some of these chemicals, but due to their cost, new technologies should be developing in order to create cost-effective and eco-friendly bioremediation technologies for environmental conversions. Bioremediation is an increasingly popular using microbial and algae strains for degrading waste contaminants. It is using of microorganisms and its enzymes to protect the environment from severe pollution. Bioremediation may be employed in order to eliminate specific contaminants, such as chlorinated pesticides or other pollutants from the environment. Microorganisms degrade the different pollutants in a natural environment but some modifications can be done to enhance its degradation efficiency at a faster rate in a limited time frame by using the genetically engineered microorganisms and microalgae. In this chapter, the role of the bacteria, fungi and algae in bioremediation of different environmental pollutants was highlighted.


Sign in / Sign up

Export Citation Format

Share Document