scholarly journals HtrA1 Is Specifically Up-Regulated in Active Keloid Lesions and Stimulates Keloids Development

Author(s):  
Satoko Yamawaki ◽  
Motoko Naitoh ◽  
Hiroshi Kubota ◽  
Rino Aya ◽  
Yasuhiro Katayama ◽  
...  

1) Background: Keloids occur after the failure during the wound-healing process, persist the inflammation and are refractory to various treatments. The pathogenesis of keloids is still unclear. We previously analyzed the gene expression profiles in keloid tissue using microarray and Northern blot analysis and found that HtrA1 was markedly upregulated in the keloid lesions. HtrA1 is a member of the HtrA family of serine protease, has been suggested to play a role in the pathogenesis of various diseases including age-related macular degeneration and osteoarthritis by modulating proteins in extracellular matrix or cell surface. We focused on HtrA1, analyzed the localization and the role in keloid pathogenesis. 2) Methods: Twenty seven keloid patients and seven unrelated patients were enrolled in this study. We performed in situ hybridization analysis, immunohistochemical analysis, western blot analysis and cell proliferation assay. 3) Results: First, the fibroblast-like cells expressed HtrA1 higher in the active keloid lesions than in the surrounding lesions in situ hybridization. Second, the proportion of HtrA1-positive cells in keloid was higher than that of in normal skin significantly in immunohistochemical analysis. Third, HtrA1 protein was up-regulated, relative to normal skin tissue samples in western blot analysis. Finally, silencing of HtrA1 gene expression suppressed the cell proliferation significantly. 4) Conclusion: HtrA1 was highly expressed in keloid tissues and the suppression of HtrA1 gene inhibited the proliferation of keloid-derived fibroblasts. HtrA1 may promote keloid development through accelerating cell proliferation and remodeling keloid-specific extracellular matrix or cell surface molecules. HtrA1 is suggested to have an important role in keloid pathogenesis.

2001 ◽  
Vol 86 (09) ◽  
pp. 923-928 ◽  
Author(s):  
Paul Stalboerger ◽  
Carmelo Panetta ◽  
Robert Simari ◽  
Noel Caplice

SummaryPlasmin is an important protease that mediates clot fibrinolysis and vessel wall extracellular matrix proteolysis. Recently, in vitro studies have suggested that plasmin can cleave and inactivate recombinant TFPI, a major inhibitor of TF-mediated coagulation. We hypothesized that such an interaction may occur in vascular cells expressing TFPI, or in the vessel wall, with implications for thrombolysis. In a series of experiments, we examined the effects of plasmin on cell surface and extracellular matrix (ECM) associated TFPI in endothelial cells (EC) in culture and on EC and smooth muscle cells (SMC) in the vessel wall. Plasmin (0.2 μM) decreased cell surface and matrix associated TFPI activity in cultured endothelial cells by 77 ± 5 % and 69 ± 6% respectively (p < 0.01). Plasminogen, the proenzyme form of plasmin had no such effect on cell surface TFPI or matrix TFPI. Cell surface TFPI antigen measured by fluorescence activated cell sorter (FACS) was also significantly reduced by plasmin. Proteolysis of conditioned medium TFPI was suggested by loss of a ~45kD TFPI on Western Blot analysis following plasmin treatment. Plasmin also proteolysed a ~45kD TFPI protein in the intact ECM of EC, an effect which was inhibited by preincubation with aprotinin, a plasmin inhibitor. Incubation of similar concentrations of plasmin, with homogenates of normal vessel decreased a ~45kD TFPI immunoreactive band on Western blot analysis. Plasmin also decreased surface TFPI activity on frozen sections of normal vessel as measured by an amidolytic assay. Finally, plasmin treatment of atherosclerotic plaque sections caused complete removal of TFPI immunoreactivity associated with luminal EC and intimal SMC, when compared to control treated plaque (n = 3). Together these data suggest that plasmin proteolyses the majority of EC-associated (surface and matrix) TFPI and may remove TFPI from the luminal surface and intima of the vessel wall. TFPI proteolysis in cultured EC was associated with significant reduction in TFPI anticoagulant activity. These data provide evidence that plasmin degradation of TFPI occurs in vascular cells and in the vessel wall and may have implications for rethrombosis following thrombolysis in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mari Kawaguchi ◽  
Yohei Okazawa ◽  
Aiko Imafuku ◽  
Yuko Nakano ◽  
Risa Shimizu ◽  
...  

AbstractGenerally, animals extract nutrients from food by degradation using digestive enzymes. Trypsin and chymotrypsin, one of the major digestive enzymes in vertebrates, are pancreatic proenzymes secreted into the intestines. In this investigation, we report the identification of a digestive teleost enzyme, a pancreatic astacin that we termed pactacin. Pactacin, which belongs to the astacin metalloprotease family, emerged during the evolution of teleosts through gene duplication of astacin family enzymes containing six cysteine residues (C6astacin, or C6AST). In this study, we first cloned C6AST genes from pot-bellied seahorse (Hippocampus abdominalis) and analyzed their phylogenetic relationships using over 100 C6AST genes. Nearly all these genes belong to one of three clades: pactacin, nephrosin, and patristacin. Genes of the pactacin clade were further divided into three subclades. To compare the localization and functions of the three pactacin subclades, we studied pactacin enzymes in pot-bellied seahorse and medaka (Oryzias latipes). In situ hybridization revealed that genes of all three subclades were commonly expressed in the pancreas. Western blot analysis indicated storage of pactacin pro-enzyme form in the pancreas, and conversion to the active forms in the intestine. Finally, we partially purified the pactacin from digestive fluid, and found that pactacin is novel digestive enzyme that is specific in teleosts.


2021 ◽  
pp. 096032712098887
Author(s):  
L Wang ◽  
B Mi ◽  
Y Zhang ◽  
H Yan ◽  
H Zhu

Background and purpose: Osteoarthritis (OA) is a disease with significant degenerative changes of articular cartilage, which is reported to be closely related to the integrity of chondrocytes extracellular matrix (ECM). Alendronate belongs to the family of bisphosphonates with promising cartilage repair function. In the present study, the effects of Alendronate on the gene expression of chondrocytes ECM and the potential mechanism will be investigated to explore the potential therapeutic property of Alendronate on OA. Methods: Human SW1353 chondrocytes were stimulated with 1 and 2 μM Alendronate for 12 h. The gene expression of Col2α1, COL9α2, and Acan in the treated chondrocytes was determined by qRT-PCR. QRT-PCR and western blot analysis were used to evaluate the expression level of SOX-9 in the treated chondrocytes. The expression level of SP-1 was checked by qRT-PCR and immunostaining. SiRNA against SP-1 was transfected into chondrocytes to knockdown the expression of SP-1. The levels of p-ERK1/2 and total ERK1/2 were examined using western blot analysis. TNF-α was used to induce an OA-like in vitro model in the chondrocytes for therapeutic evaluations. Results: Treatment with Alendronate increased the levels of ECM related genes ( Col2α1, COL9α2, and Acan) in a dose-dependent manner through increasing the expression of SOX-9, a central regulator of ECM genes. Additionally, our findings demonstrate that the effects of Alendronate in the expression of SOX-9 are mediated by SP-1 as silencing of SP-1 abolished these effects. Notably, Alendronate increased the phosphorylation of ERK1/2 and inhibition of ERK1/2 using its specific inhibitor U0126 blocked the expression of SP-1. Finally, we found that treatment with Alendronate could rescue TNF-α-induced reduction of Col2α1, COL9α2, Acan and SOX-9. Conclusion: Our data indicated that Alendronate might promote the gene expression of extracellular matrix through SOX-9 mediated by the ERK1/2/SP1 signaling pathway.


1992 ◽  
Vol 40 (11) ◽  
pp. 1761-1767 ◽  
Author(s):  
M Denijn ◽  
R A de Weger ◽  
W den Otter ◽  
J A van Unnik ◽  
C J Lips

Calcitonin (CT) and calcitonin gene-related peptide (CGRP) are encoded by a single gene, the CALC-I gene. They are expressed in the thyroid and in the nervous system by alternative splicing of the pre-messenger RNA derived from the CALC-I gene. In medullary thyroid carcinoma (MTC), a malignancy derived from the calcitonin-producing C-cells in the thyroid, production of calcitonin and CGRP is a common feature. We investigated the CT and CGRP production of four spontaneous MTCs transplanted three to four times and 14 MTC lines transplanted for several years in WAG/Rij rats, a strain with hereditary MTC. The expression of CT and CGRP in the spontaneous and in the transplanted tumors was studied by means of RNA in situ hybridization (RISH), dot-blot analysis, and immunohistochemistry. A down-regulation of CT production in transplanted compared with spontaneous tumors was observed, but an inverse relation between CT and CGRP mRNA content in both spontaneous and transplanted tumors was not observed. In this study, RISH proved to be as sensitive as dot-blot analysis to detect gene expression in tissue samples. The different approaches of analyzing the gene expression in tissue samples (the cellular localization of gene expression by ISH vs the analysis of an extract of a total tissue sample with dot-blot analysis) showed that each technique is equal in value and that they are complementary to each other.


2003 ◽  
Vol 285 (6) ◽  
pp. G1259-G1267 ◽  
Author(s):  
Arthur F. Stucchi ◽  
Khaled O. Shebani ◽  
Susan E. Leeman ◽  
Chi-Chung Wang ◽  
Karen L. Reed ◽  
...  

Ileal pouch-anal anastomosis (IPAA) is an excellent surgical option for patients with chronic ulcerative colitis (CUC) requiring colectomy; however, persistent episodes of ileal pouch inflammation, or pouchitis, may result in debilitating postoperative complications. Because considerable evidence implicates substance P (SP) as an inflammatory mediator of CUC, we investigated whether SP participates in the pathophysiology of pouchitis. With the use of a rat model of IPAA that we developed, we showed that ileal pouch MPO levels and neurokinin 1 receptor (NK-1R) protein expression by Western blot analysis were significantly elevated 28 days after IPAA surgery. In situ hybridization and immunohistochemistry showed that the increase in NK-1R protein expression was localized to the lamina propria and epithelia of pouch ileum. The intraperitoneal administration of the NK-1R antagonist (NK-1RA) CJ-12,255 for 4 days, starting on day 28, was effective in reducing MPO levels. Starting on day 28, animals with IPAA were given 5% dextran sulfate sodium (DSS) in their drinking water for 4 days, which caused histological and physical signs of clinical pouchitis concomitant with significant increases in ileal pouch MPO concentrations as well as NK-1R protein expression by Western blot analysis. In situ hybridization and immunohistochemistry showed that the increase in NK-1R protein expression was especially evident in crypt epithelia of pouch ileum. When the NK-1RA was administered 1 day before starting DSS and continued for the duration of DSS administration, the physical signs of clinical pouchitis and the rise in MPO were prevented. These data implicate SP in the pathophysiology of pouchitis and suggest that NK-1RA may be of therapeutic value in the management of clinical pouchitis.


2020 ◽  
Vol 27 (5) ◽  
pp. 432-446
Author(s):  
Akiko Yamamoto ◽  
Ken-ichiro Matsunaga ◽  
Toyoaki Anai ◽  
Hitoshi Kawano ◽  
Toshihisa Ueda ◽  
...  

Background: Intermediate Filaments (IFs) are major constituents of the cytoskeletal systems in animal cells. Objective: To gain insights into the structure-function relationship of invertebrate cytoplasmic IF proteins, we characterized an IF protein from the platyhelminth, Dugesia japonica, termed Dif-1. Method: cDNA cloning, in situ hybridization, immunohistochemical analysis, and IF assembly experiments in vitro using recombinant Dif-1, were performed for protein characterization. Results: The structure deduced from the cDNA sequence showed that Djf-1 comprises 568 amino acids and has a tripartite domain structure (N-terminal head, central rod, and C-terminal tail) that is characteristic of IF proteins. Similar to nuclear IF lamins, Djf-1 contains an extra 42 residues in the coil 1b subdomain of the rod domain that is absent from vertebrate cytoplasmic IF proteins and a nuclear lamin-homology segment of approximately 105 residues in the tail domain; however, it contains no nuclear localization signal. In situ hybridization analysis showed that Djf-1 mRNA is specifically expressed in cells located within the marginal region encircling the worm body. Immunohistochemical analysis showed that Djf-1 protein forms cytoplasmic IFs located close to the microvilli of the cells. In vitro IF assembly experiments using recombinant proteins showed that Djf-1 alone polymerizes into IFs. Deletion of the extra 42 residues in the coil 1b subdomain resulted in the failure of IF formation. Conclusions: Together with data from other histological studies, our results suggest that Djf- 1 is expressed specifically in anchor cells within the glandular adhesive organs of the worm and that Djf-1 IFs may play a role in protecting the cells from mechanical stress.


2021 ◽  
Vol 4 (1) ◽  
pp. 20
Author(s):  
Mujeeb Shittu ◽  
Tessa Steenwinkel ◽  
William Dion ◽  
Nathan Ostlund ◽  
Komal Raja ◽  
...  

RNA in situ hybridization (ISH) is used to visualize spatio-temporal gene expression patterns with broad applications in biology and biomedicine. Here we provide a protocol for mRNA ISH in developing pupal wings and abdomens for model and non-model Drosophila species. We describe best practices in pupal staging, tissue preparation, probe design and synthesis, imaging of gene expression patterns, and image-editing techniques. This protocol has been successfully used to investigate the roles of genes underlying the evolution of novel color patterns in non-model Drosophila species.


Reproduction ◽  
2003 ◽  
pp. 621-627 ◽  
Author(s):  
RD Geisert ◽  
MD Ashworth ◽  

Attachment of the placenta to the uterus in pigs involves extracellular interaction between the expanding trophoblastic membrane and the thick glycocalyx present on the uterine epithelial microvilli. Formation of complexes between members of inter-alpha-trypsin inhibitor family may function in the maintenance of the extracellular matrix. This study investigated the change in the inter-alpha-trypsin inhibitor heavy chains (ITIH1, ITIH2, ITIH3 and ITIH4) during the oestrous cycle and early pregnancy in pigs. Gene expression of ITIH1, ITIH2, ITIH3 and ITIH4 was detected in the endometrium of cyclic and pregnant gilts; however, gene expression of ITIH was not altered throughout the oestrous cycle or early pregnancy. Western blot analysis with an ITIH antiserum identified the possible linkage forms of ITIH with the serine protease inhibitor, bikunin. Pregnancy altered the release of the various inter-alpha-inhibitor forms from the endometrium during the period of trophoblastic attachment. The results from this study indicate that the inter-alpha-trypsin inhibitor family plays an important role in maintenance of the uterine surface glycocalyx during placental attachment in pigs.


Sign in / Sign up

Export Citation Format

Share Document